Metamath Proof Explorer


Theorem conncompconn

Description: The connected component containing A is connected. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypothesis conncomp.2 S=x𝒫X|AxJ𝑡xConn
Assertion conncompconn JTopOnXAXJ𝑡SConn

Proof

Step Hyp Ref Expression
1 conncomp.2 S=x𝒫X|AxJ𝑡xConn
2 uniiun x𝒫X|AxJ𝑡xConn=yx𝒫X|AxJ𝑡xConny
3 1 2 eqtri S=yx𝒫X|AxJ𝑡xConny
4 3 oveq2i J𝑡S=J𝑡yx𝒫X|AxJ𝑡xConny
5 simpl JTopOnXAXJTopOnX
6 simpr JTopOnXAXyx𝒫X|AxJ𝑡xConnyx𝒫X|AxJ𝑡xConn
7 eleq2w x=yAxAy
8 oveq2 x=yJ𝑡x=J𝑡y
9 8 eleq1d x=yJ𝑡xConnJ𝑡yConn
10 7 9 anbi12d x=yAxJ𝑡xConnAyJ𝑡yConn
11 10 elrab yx𝒫X|AxJ𝑡xConny𝒫XAyJ𝑡yConn
12 6 11 sylib JTopOnXAXyx𝒫X|AxJ𝑡xConny𝒫XAyJ𝑡yConn
13 12 simpld JTopOnXAXyx𝒫X|AxJ𝑡xConny𝒫X
14 13 elpwid JTopOnXAXyx𝒫X|AxJ𝑡xConnyX
15 12 simprd JTopOnXAXyx𝒫X|AxJ𝑡xConnAyJ𝑡yConn
16 15 simpld JTopOnXAXyx𝒫X|AxJ𝑡xConnAy
17 15 simprd JTopOnXAXyx𝒫X|AxJ𝑡xConnJ𝑡yConn
18 5 14 16 17 iunconn JTopOnXAXJ𝑡yx𝒫X|AxJ𝑡xConnyConn
19 4 18 eqeltrid JTopOnXAXJ𝑡SConn