| Step | Hyp | Ref | Expression | 
						
							| 1 |  | constr0.1 |  | 
						
							| 2 |  | constrsscn.1 |  | 
						
							| 3 |  | fveq2 |  | 
						
							| 4 | 3 | sseq1d |  | 
						
							| 5 |  | fveq2 |  | 
						
							| 6 | 5 | sseq1d |  | 
						
							| 7 |  | fveq2 |  | 
						
							| 8 | 7 | sseq1d |  | 
						
							| 9 |  | fveq2 |  | 
						
							| 10 | 9 | sseq1d |  | 
						
							| 11 | 1 | constr0 |  | 
						
							| 12 |  | 0cn |  | 
						
							| 13 |  | ax-1cn |  | 
						
							| 14 |  | prssi |  | 
						
							| 15 | 12 13 14 | mp2an |  | 
						
							| 16 | 11 15 | eqsstri |  | 
						
							| 17 |  | simpl |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 | 1 17 18 | constrsuc |  | 
						
							| 20 | 19 | biimpa |  | 
						
							| 21 | 20 | simpld |  | 
						
							| 22 | 21 | ex |  | 
						
							| 23 | 22 | ssrdv |  | 
						
							| 24 | 23 | ex |  | 
						
							| 25 |  | vex |  | 
						
							| 26 | 25 | a1i |  | 
						
							| 27 |  | simpl |  | 
						
							| 28 | 1 26 27 | constrlim |  | 
						
							| 29 |  | fveq2 |  | 
						
							| 30 | 29 | sseq1d |  | 
						
							| 31 |  | simplr |  | 
						
							| 32 |  | simpr |  | 
						
							| 33 | 30 31 32 | rspcdva |  | 
						
							| 34 | 33 | iunssd |  | 
						
							| 35 | 28 34 | eqsstrd |  | 
						
							| 36 | 35 | ex |  | 
						
							| 37 | 4 6 8 10 16 24 36 | tfinds |  | 
						
							| 38 | 2 37 | syl |  |