Step |
Hyp |
Ref |
Expression |
1 |
|
constr0.1 |
|
2 |
|
constrsscn.1 |
|
3 |
|
fveq2 |
|
4 |
3
|
sseq1d |
|
5 |
|
fveq2 |
|
6 |
5
|
sseq1d |
|
7 |
|
fveq2 |
|
8 |
7
|
sseq1d |
|
9 |
|
fveq2 |
|
10 |
9
|
sseq1d |
|
11 |
1
|
constr0 |
|
12 |
|
0cn |
|
13 |
|
ax-1cn |
|
14 |
|
prssi |
|
15 |
12 13 14
|
mp2an |
|
16 |
11 15
|
eqsstri |
|
17 |
|
simpl |
|
18 |
|
eqid |
|
19 |
1 17 18
|
constrsuc |
|
20 |
19
|
biimpa |
|
21 |
20
|
simpld |
|
22 |
21
|
ex |
|
23 |
22
|
ssrdv |
|
24 |
23
|
ex |
|
25 |
|
vex |
|
26 |
25
|
a1i |
|
27 |
|
simpl |
|
28 |
1 26 27
|
constrlim |
|
29 |
|
fveq2 |
|
30 |
29
|
sseq1d |
|
31 |
|
simplr |
|
32 |
|
simpr |
|
33 |
30 31 32
|
rspcdva |
|
34 |
33
|
iunssd |
|
35 |
28 34
|
eqsstrd |
|
36 |
35
|
ex |
|
37 |
4 6 8 10 16 24 36
|
tfinds |
|
38 |
2 37
|
syl |
|