Description: The reflexive closure is idempotent. (Contributed by RP, 13-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | corclrcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrcl4 | |
|
2 | dfrcl4 | |
|
3 | dfrcl4 | |
|
4 | prex | |
|
5 | unidm | |
|
6 | 5 | eqcomi | |
7 | oveq2 | |
|
8 | 7 | cbviunv | |
9 | 1ex | |
|
10 | oveq2 | |
|
11 | 9 10 | iunxsn | |
12 | ovex | |
|
13 | 4 12 | iunex | |
14 | relexp1g | |
|
15 | 13 14 | ax-mp | |
16 | 11 15 | eqtri | |
17 | 16 | eqcomi | |
18 | 8 17 | eqtri | |
19 | snsspr2 | |
|
20 | iunss1 | |
|
21 | 19 20 | ax-mp | |
22 | 18 21 | eqsstri | |
23 | c0ex | |
|
24 | 23 | prid1 | |
25 | oveq2 | |
|
26 | 25 | ssiun2s | |
27 | 24 26 | ax-mp | |
28 | oveq2 | |
|
29 | 28 | cbviunv | |
30 | 29 | eqimssi | |
31 | unss12 | |
|
32 | 27 30 31 | mp2an | |
33 | df-pr | |
|
34 | iuneq1 | |
|
35 | 33 34 | ax-mp | |
36 | iunxun | |
|
37 | oveq2 | |
|
38 | 23 37 | iunxsn | |
39 | vex | |
|
40 | 0nn0 | |
|
41 | 1nn0 | |
|
42 | prssi | |
|
43 | 40 41 42 | mp2an | |
44 | 24 24 | elini | |
45 | 44 | ne0ii | |
46 | iunrelexp0 | |
|
47 | 39 43 45 46 | mp3an | |
48 | 38 47 | eqtri | |
49 | 48 16 | uneq12i | |
50 | 36 49 | eqtri | |
51 | 35 50 | eqtri | |
52 | iunxun | |
|
53 | 32 51 52 | 3sstr4i | |
54 | 1 2 3 4 4 6 22 22 53 | comptiunov2i | |