Metamath Proof Explorer


Theorem corclrcl

Description: The reflexive closure is idempotent. (Contributed by RP, 13-Jun-2020)

Ref Expression
Assertion corclrcl r*r*=r*

Proof

Step Hyp Ref Expression
1 dfrcl4 r*=aVi01ari
2 dfrcl4 r*=bVj01brj
3 dfrcl4 r*=cVk01crk
4 prex 01V
5 unidm 0101=01
6 5 eqcomi 01=0101
7 oveq2 k=jdrk=drj
8 7 cbviunv k01drk=j01drj
9 1ex 1V
10 oveq2 i=1j01drjri=j01drjr1
11 9 10 iunxsn i1j01drjri=j01drjr1
12 ovex drjV
13 4 12 iunex j01drjV
14 relexp1g j01drjVj01drjr1=j01drj
15 13 14 ax-mp j01drjr1=j01drj
16 11 15 eqtri i1j01drjri=j01drj
17 16 eqcomi j01drj=i1j01drjri
18 8 17 eqtri k01drk=i1j01drjri
19 snsspr2 101
20 iunss1 101i1j01drjrii01j01drjri
21 19 20 ax-mp i1j01drjrii01j01drjri
22 18 21 eqsstri k01drki01j01drjri
23 c0ex 0V
24 23 prid1 001
25 oveq2 k=0drk=dr0
26 25 ssiun2s 001dr0k01drk
27 24 26 ax-mp dr0k01drk
28 oveq2 j=kdrj=drk
29 28 cbviunv j01drj=k01drk
30 29 eqimssi j01drjk01drk
31 unss12 dr0k01drkj01drjk01drkdr0j01drjk01drkk01drk
32 27 30 31 mp2an dr0j01drjk01drkk01drk
33 df-pr 01=01
34 iuneq1 01=01i01j01drjri=i01j01drjri
35 33 34 ax-mp i01j01drjri=i01j01drjri
36 iunxun i01j01drjri=i0j01drjrii1j01drjri
37 oveq2 i=0j01drjri=j01drjr0
38 23 37 iunxsn i0j01drjri=j01drjr0
39 vex dV
40 0nn0 00
41 1nn0 10
42 prssi 0010010
43 40 41 42 mp2an 010
44 24 24 elini 00101
45 44 ne0ii 0101
46 iunrelexp0 dV0100101j01drjr0=dr0
47 39 43 45 46 mp3an j01drjr0=dr0
48 38 47 eqtri i0j01drjri=dr0
49 48 16 uneq12i i0j01drjrii1j01drjri=dr0j01drj
50 36 49 eqtri i01j01drjri=dr0j01drj
51 35 50 eqtri i01j01drjri=dr0j01drj
52 iunxun k0101drk=k01drkk01drk
53 32 51 52 3sstr4i i01j01drjrik0101drk
54 1 2 3 4 4 6 22 22 53 comptiunov2i r*r*=r*