Metamath Proof Explorer


Theorem cotrg

Description: Two ways of saying that the composition of two relations is included in a third relation. See its special instance cotr for the main application. (Contributed by NM, 27-Dec-1996) (Proof shortened by Andrew Salmon, 27-Aug-2011) Generalized from its special instance cotr . (Revised by Richard Penner, 24-Dec-2019) (Proof shortened by SN, 19-Dec-2024) Avoid ax-11 . (Revised by BTernaryTau, 29-Dec-2024)

Ref Expression
Assertion cotrg ABCxyzxByyAzxCz

Proof

Step Hyp Ref Expression
1 relco RelAB
2 ssrel3 RelABABCxzxABzxCz
3 1 2 ax-mp ABCxzxABzxCz
4 vex xV
5 vex zV
6 4 5 brco xABzyxByyAz
7 6 imbi1i xABzxCzyxByyAzxCz
8 19.23v yxByyAzxCzyxByyAzxCz
9 7 8 bitr4i xABzxCzyxByyAzxCz
10 9 albii zxABzxCzzyxByyAzxCz
11 breq2 z=wyAzyAw
12 11 anbi2d z=wxByyAzxByyAw
13 breq2 z=wxCzxCw
14 12 13 imbi12d z=wxByyAzxCzxByyAwxCw
15 breq2 y=wxByxBw
16 breq1 y=wyAzwAz
17 15 16 anbi12d y=wxByyAzxBwwAz
18 17 imbi1d y=wxByyAzxCzxBwwAzxCz
19 14 18 alcomw zyxByyAzxCzyzxByyAzxCz
20 10 19 bitri zxABzxCzyzxByyAzxCz
21 20 albii xzxABzxCzxyzxByyAzxCz
22 3 21 bitri ABCxyzxByyAzxCz