Metamath Proof Explorer


Theorem cphqss

Description: The scalar field of a subcomplex pre-Hilbert space contains the rational numbers. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses cphsca.f F=ScalarW
cphsca.k K=BaseF
Assertion cphqss WCPreHilK

Proof

Step Hyp Ref Expression
1 cphsca.f F=ScalarW
2 cphsca.k K=BaseF
3 1 2 cphsubrg WCPreHilKSubRingfld
4 1 2 cphsca WCPreHilF=fld𝑠K
5 cphlvec WCPreHilWLVec
6 1 lvecdrng WLVecFDivRing
7 5 6 syl WCPreHilFDivRing
8 4 7 eqeltrrd WCPreHilfld𝑠KDivRing
9 qsssubdrg KSubRingfldfld𝑠KDivRingK
10 3 8 9 syl2anc WCPreHilK