Metamath Proof Explorer


Theorem crim

Description: The real part of a complex number representation. Definition 10-3.1 of Gleason p. 132. (Contributed by NM, 12-May-2005) (Revised by Mario Carneiro, 7-Nov-2013)

Ref Expression
Assertion crim ABA+iB=B

Proof

Step Hyp Ref Expression
1 recn AA
2 ax-icn i
3 recn BB
4 mulcl iBiB
5 2 3 4 sylancr BiB
6 addcl AiBA+iB
7 1 5 6 syl2an ABA+iB
8 imval A+iBA+iB=A+iBi
9 7 8 syl ABA+iB=A+iBi
10 2 4 mpan BiB
11 ine0 i0
12 divdir AiBii0A+iBi=Ai+iBi
13 12 3expa AiBii0A+iBi=Ai+iBi
14 2 11 13 mpanr12 AiBA+iBi=Ai+iBi
15 10 14 sylan2 ABA+iBi=Ai+iBi
16 divrec2 Aii0Ai=1iA
17 2 11 16 mp3an23 AAi=1iA
18 irec 1i=i
19 18 oveq1i 1iA=iA
20 19 a1i A1iA=iA
21 mulneg12 iAiA=iA
22 2 21 mpan AiA=iA
23 17 20 22 3eqtrd AAi=iA
24 divcan3 Bii0iBi=B
25 2 11 24 mp3an23 BiBi=B
26 23 25 oveqan12d ABAi+iBi=iA+B
27 negcl AA
28 mulcl iAiA
29 2 27 28 sylancr AiA
30 addcom iABiA+B=B+iA
31 29 30 sylan ABiA+B=B+iA
32 15 26 31 3eqtrrd ABB+iA=A+iBi
33 1 3 32 syl2an ABB+iA=A+iBi
34 33 fveq2d ABB+iA=A+iBi
35 id BB
36 renegcl AA
37 crre BAB+iA=B
38 35 36 37 syl2anr ABB+iA=B
39 9 34 38 3eqtr2d ABA+iB=B