Metamath Proof Explorer


Theorem crngbinom

Description: The binomial theorem for commutative rings (special case of csrgbinom ): ( A + B ) ^ N is the sum from k = 0 to N of ( N _C k ) x. ( ( A ^ k ) x. ( B ^ ( N - k ) ) . (Contributed by AV, 24-Aug-2019)

Ref Expression
Hypotheses crngbinom.s S=BaseR
crngbinom.m ×˙=R
crngbinom.t ·˙=R
crngbinom.a +˙=+R
crngbinom.g G=mulGrpR
crngbinom.e ×˙=G
Assertion crngbinom RCRingN0ASBSN×˙A+˙B=Rk=0N(Nk)·˙Nk×˙A×˙k×˙B

Proof

Step Hyp Ref Expression
1 crngbinom.s S=BaseR
2 crngbinom.m ×˙=R
3 crngbinom.t ·˙=R
4 crngbinom.a +˙=+R
5 crngbinom.g G=mulGrpR
6 crngbinom.e ×˙=G
7 crngring RCRingRRing
8 ringsrg RRingRSRing
9 7 8 syl RCRingRSRing
10 9 adantr RCRingN0RSRing
11 5 crngmgp RCRingGCMnd
12 11 adantr RCRingN0GCMnd
13 simpr RCRingN0N0
14 10 12 13 3jca RCRingN0RSRingGCMndN0
15 1 2 3 4 5 6 csrgbinom RSRingGCMndN0ASBSN×˙A+˙B=Rk=0N(Nk)·˙Nk×˙A×˙k×˙B
16 14 15 sylan RCRingN0ASBSN×˙A+˙B=Rk=0N(Nk)·˙Nk×˙A×˙k×˙B