Metamath Proof Explorer


Theorem crngbinom

Description: The binomial theorem for commutative rings (special case of csrgbinom ): ( A + B ) ^ N is the sum from k = 0 to N of ( N _C k ) x. ( ( A ^ k ) x. ( B ^ ( N - k ) ) . (Contributed by AV, 24-Aug-2019)

Ref Expression
Hypotheses crngbinom.s S = Base R
crngbinom.m × ˙ = R
crngbinom.t · ˙ = R
crngbinom.a + ˙ = + R
crngbinom.g G = mulGrp R
crngbinom.e × ˙ = G
Assertion crngbinom R CRing N 0 A S B S N × ˙ A + ˙ B = R k = 0 N ( N k) · ˙ N k × ˙ A × ˙ k × ˙ B

Proof

Step Hyp Ref Expression
1 crngbinom.s S = Base R
2 crngbinom.m × ˙ = R
3 crngbinom.t · ˙ = R
4 crngbinom.a + ˙ = + R
5 crngbinom.g G = mulGrp R
6 crngbinom.e × ˙ = G
7 crngring R CRing R Ring
8 ringsrg R Ring R SRing
9 7 8 syl R CRing R SRing
10 9 adantr R CRing N 0 R SRing
11 5 crngmgp R CRing G CMnd
12 11 adantr R CRing N 0 G CMnd
13 simpr R CRing N 0 N 0
14 10 12 13 3jca R CRing N 0 R SRing G CMnd N 0
15 1 2 3 4 5 6 csrgbinom R SRing G CMnd N 0 A S B S N × ˙ A + ˙ B = R k = 0 N ( N k) · ˙ N k × ˙ A × ˙ k × ˙ B
16 14 15 sylan R CRing N 0 A S B S N × ˙ A + ˙ B = R k = 0 N ( N k) · ˙ N k × ˙ A × ˙ k × ˙ B