Description: The binomial theorem for commutative rings (special case of csrgbinom ): ( A + B ) ^ N is the sum from k = 0 to N of ( N _C k ) x. ( ( A ^ k ) x. ( B ^ ( N - k ) ) . (Contributed by AV, 24-Aug-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | crngbinom.s | |
|
crngbinom.m | |
||
crngbinom.t | |
||
crngbinom.a | |
||
crngbinom.g | |
||
crngbinom.e | |
||
Assertion | crngbinom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngbinom.s | |
|
2 | crngbinom.m | |
|
3 | crngbinom.t | |
|
4 | crngbinom.a | |
|
5 | crngbinom.g | |
|
6 | crngbinom.e | |
|
7 | crngring | |
|
8 | ringsrg | |
|
9 | 7 8 | syl | |
10 | 9 | adantr | |
11 | 5 | crngmgp | |
12 | 11 | adantr | |
13 | simpr | |
|
14 | 10 12 13 | 3jca | |
15 | 1 2 3 4 5 6 | csrgbinom | |
16 | 14 15 | sylan | |