Metamath Proof Explorer


Theorem csrgbinom

Description: The binomial theorem for commutative semirings. (Contributed by AV, 24-Aug-2019)

Ref Expression
Hypotheses srgbinom.s S=BaseR
srgbinom.m ×˙=R
srgbinom.t ·˙=R
srgbinom.a +˙=+R
srgbinom.g G=mulGrpR
srgbinom.e ×˙=G
Assertion csrgbinom RSRingGCMndN0ASBSN×˙A+˙B=Rk=0N(Nk)·˙Nk×˙A×˙k×˙B

Proof

Step Hyp Ref Expression
1 srgbinom.s S=BaseR
2 srgbinom.m ×˙=R
3 srgbinom.t ·˙=R
4 srgbinom.a +˙=+R
5 srgbinom.g G=mulGrpR
6 srgbinom.e ×˙=G
7 3simpb RSRingGCMndN0RSRingN0
8 7 adantr RSRingGCMndN0ASBSRSRingN0
9 simprl RSRingGCMndN0ASBSAS
10 simprr RSRingGCMndN0ASBSBS
11 simpl2 RSRingGCMndN0ASBSGCMnd
12 5 1 mgpbas S=BaseG
13 5 2 mgpplusg ×˙=+G
14 12 13 cmncom GCMndASBSA×˙B=B×˙A
15 11 9 10 14 syl3anc RSRingGCMndN0ASBSA×˙B=B×˙A
16 1 2 3 4 5 6 srgbinom RSRingN0ASBSA×˙B=B×˙AN×˙A+˙B=Rk=0N(Nk)·˙Nk×˙A×˙k×˙B
17 8 9 10 15 16 syl13anc RSRingGCMndN0ASBSN×˙A+˙B=Rk=0N(Nk)·˙Nk×˙A×˙k×˙B