| Step |
Hyp |
Ref |
Expression |
| 1 |
|
srgbinom.s |
|
| 2 |
|
srgbinom.m |
|
| 3 |
|
srgbinom.t |
|
| 4 |
|
srgbinom.a |
|
| 5 |
|
srgbinom.g |
|
| 6 |
|
srgbinom.e |
|
| 7 |
|
oveq1 |
|
| 8 |
|
oveq2 |
|
| 9 |
|
oveq1 |
|
| 10 |
|
oveq1 |
|
| 11 |
10
|
oveq1d |
|
| 12 |
11
|
oveq1d |
|
| 13 |
9 12
|
oveq12d |
|
| 14 |
8 13
|
mpteq12dv |
|
| 15 |
14
|
oveq2d |
|
| 16 |
7 15
|
eqeq12d |
|
| 17 |
16
|
imbi2d |
|
| 18 |
|
oveq1 |
|
| 19 |
|
oveq2 |
|
| 20 |
|
oveq1 |
|
| 21 |
|
oveq1 |
|
| 22 |
21
|
oveq1d |
|
| 23 |
22
|
oveq1d |
|
| 24 |
20 23
|
oveq12d |
|
| 25 |
19 24
|
mpteq12dv |
|
| 26 |
25
|
oveq2d |
|
| 27 |
18 26
|
eqeq12d |
|
| 28 |
27
|
imbi2d |
|
| 29 |
|
oveq1 |
|
| 30 |
|
oveq2 |
|
| 31 |
|
oveq1 |
|
| 32 |
|
oveq1 |
|
| 33 |
32
|
oveq1d |
|
| 34 |
33
|
oveq1d |
|
| 35 |
31 34
|
oveq12d |
|
| 36 |
30 35
|
mpteq12dv |
|
| 37 |
36
|
oveq2d |
|
| 38 |
29 37
|
eqeq12d |
|
| 39 |
38
|
imbi2d |
|
| 40 |
|
oveq1 |
|
| 41 |
|
oveq2 |
|
| 42 |
|
oveq1 |
|
| 43 |
|
oveq1 |
|
| 44 |
43
|
oveq1d |
|
| 45 |
44
|
oveq1d |
|
| 46 |
42 45
|
oveq12d |
|
| 47 |
41 46
|
mpteq12dv |
|
| 48 |
47
|
oveq2d |
|
| 49 |
40 48
|
eqeq12d |
|
| 50 |
49
|
imbi2d |
|
| 51 |
|
simpr1 |
|
| 52 |
5 1
|
mgpbas |
|
| 53 |
51 52
|
eleqtrdi |
|
| 54 |
|
eqid |
|
| 55 |
|
eqid |
|
| 56 |
54 55 6
|
mulg0 |
|
| 57 |
53 56
|
syl |
|
| 58 |
|
simpr2 |
|
| 59 |
58 52
|
eleqtrdi |
|
| 60 |
54 55 6
|
mulg0 |
|
| 61 |
59 60
|
syl |
|
| 62 |
57 61
|
oveq12d |
|
| 63 |
62
|
oveq2d |
|
| 64 |
|
eqid |
|
| 65 |
1 64
|
srgidcl |
|
| 66 |
65
|
ancli |
|
| 67 |
66
|
adantr |
|
| 68 |
1 2 64
|
srglidm |
|
| 69 |
67 68
|
syl |
|
| 70 |
69
|
oveq2d |
|
| 71 |
|
eqid |
|
| 72 |
71 64
|
srgidcl |
|
| 73 |
71 3
|
mulg1 |
|
| 74 |
72 73
|
syl |
|
| 75 |
74
|
adantr |
|
| 76 |
70 75
|
eqtrd |
|
| 77 |
5 64
|
ringidval |
|
| 78 |
|
id |
|
| 79 |
78 78
|
oveq12d |
|
| 80 |
79
|
oveq2d |
|
| 81 |
80 78
|
eqeq12d |
|
| 82 |
77 81
|
ax-mp |
|
| 83 |
76 82
|
sylib |
|
| 84 |
63 83
|
eqtrd |
|
| 85 |
|
fz0sn |
|
| 86 |
85
|
a1i |
|
| 87 |
86
|
mpteq1d |
|
| 88 |
87
|
oveq2d |
|
| 89 |
|
srgmnd |
|
| 90 |
89
|
adantr |
|
| 91 |
|
c0ex |
|
| 92 |
91
|
a1i |
|
| 93 |
77 65
|
eqeltrrid |
|
| 94 |
93
|
adantr |
|
| 95 |
84 94
|
eqeltrd |
|
| 96 |
|
oveq2 |
|
| 97 |
|
0nn0 |
|
| 98 |
|
bcn0 |
|
| 99 |
97 98
|
ax-mp |
|
| 100 |
96 99
|
eqtrdi |
|
| 101 |
|
oveq2 |
|
| 102 |
|
0m0e0 |
|
| 103 |
101 102
|
eqtrdi |
|
| 104 |
103
|
oveq1d |
|
| 105 |
|
oveq1 |
|
| 106 |
104 105
|
oveq12d |
|
| 107 |
100 106
|
oveq12d |
|
| 108 |
1 107
|
gsumsn |
|
| 109 |
90 92 95 108
|
syl3anc |
|
| 110 |
88 109
|
eqtrd |
|
| 111 |
1 4
|
mndcl |
|
| 112 |
90 51 58 111
|
syl3anc |
|
| 113 |
112 52
|
eleqtrdi |
|
| 114 |
54 55 6
|
mulg0 |
|
| 115 |
113 114
|
syl |
|
| 116 |
84 110 115
|
3eqtr4rd |
|
| 117 |
|
simprl |
|
| 118 |
51
|
adantl |
|
| 119 |
58
|
adantl |
|
| 120 |
|
simprr3 |
|
| 121 |
|
simpl |
|
| 122 |
|
id |
|
| 123 |
1 2 3 4 5 6 117 118 119 120 121 122
|
srgbinomlem |
|
| 124 |
123
|
exp31 |
|
| 125 |
124
|
a2d |
|
| 126 |
17 28 39 50 116 125
|
nn0ind |
|
| 127 |
126
|
expd |
|
| 128 |
127
|
impcom |
|
| 129 |
128
|
imp |
|