Metamath Proof Explorer


Theorem csbfv12

Description: Move class substitution in and out of a function value. (Contributed by NM, 11-Nov-2005) (Revised by NM, 20-Aug-2018)

Ref Expression
Assertion csbfv12 A / x F B = A / x F A / x B

Proof

Step Hyp Ref Expression
1 csbiota A / x ι y | B F y = ι y | [˙A / x]˙ B F y
2 sbcbr123 [˙A / x]˙ B F y A / x B A / x F A / x y
3 csbconstg A V A / x y = y
4 3 breq2d A V A / x B A / x F A / x y A / x B A / x F y
5 2 4 bitrid A V [˙A / x]˙ B F y A / x B A / x F y
6 5 iotabidv A V ι y | [˙A / x]˙ B F y = ι y | A / x B A / x F y
7 1 6 eqtrid A V A / x ι y | B F y = ι y | A / x B A / x F y
8 df-fv F B = ι y | B F y
9 8 csbeq2i A / x F B = A / x ι y | B F y
10 df-fv A / x F A / x B = ι y | A / x B A / x F y
11 7 9 10 3eqtr4g A V A / x F B = A / x F A / x B
12 csbprc ¬ A V A / x F B =
13 csbprc ¬ A V A / x F =
14 13 fveq1d ¬ A V A / x F A / x B = A / x B
15 0fv A / x B =
16 14 15 eqtr2di ¬ A V = A / x F A / x B
17 12 16 eqtrd ¬ A V A / x F B = A / x F A / x B
18 11 17 pm2.61i A / x F B = A / x F A / x B