Metamath Proof Explorer


Theorem csbriota

Description: Interchange class substitution and restricted description binder. (Contributed by NM, 24-Feb-2013) (Revised by NM, 2-Sep-2018)

Ref Expression
Assertion csbriota A/xιyB|φ=ιyB|[˙A/x]˙φ

Proof

Step Hyp Ref Expression
1 csbeq1 z=Az/xιyB|φ=A/xιyB|φ
2 dfsbcq2 z=Azxφ[˙A/x]˙φ
3 2 riotabidv z=AιyB|zxφ=ιyB|[˙A/x]˙φ
4 1 3 eqeq12d z=Az/xιyB|φ=ιyB|zxφA/xιyB|φ=ιyB|[˙A/x]˙φ
5 vex zV
6 nfs1v xzxφ
7 nfcv _xB
8 6 7 nfriota _xιyB|zxφ
9 sbequ12 x=zφzxφ
10 9 riotabidv x=zιyB|φ=ιyB|zxφ
11 5 8 10 csbief z/xιyB|φ=ιyB|zxφ
12 4 11 vtoclg AVA/xιyB|φ=ιyB|[˙A/x]˙φ
13 csbprc ¬AVA/xιyB|φ=
14 df-riota ιyB|[˙A/x]˙φ=ιy|yB[˙A/x]˙φ
15 euex ∃!yyB[˙A/x]˙φyyB[˙A/x]˙φ
16 sbcex [˙A/x]˙φAV
17 16 adantl yB[˙A/x]˙φAV
18 17 exlimiv yyB[˙A/x]˙φAV
19 15 18 syl ∃!yyB[˙A/x]˙φAV
20 iotanul ¬∃!yyB[˙A/x]˙φιy|yB[˙A/x]˙φ=
21 19 20 nsyl5 ¬AVιy|yB[˙A/x]˙φ=
22 14 21 eqtr2id ¬AV=ιyB|[˙A/x]˙φ
23 13 22 eqtrd ¬AVA/xιyB|φ=ιyB|[˙A/x]˙φ
24 12 23 pm2.61i A/xιyB|φ=ιyB|[˙A/x]˙φ