Metamath Proof Explorer


Theorem csbrngVD

Description: Virtual deduction proof of csbrn . The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbrn is csbrngVD without virtual deductions and was automatically derived from csbrngVD .

1:: |- (. A e. V ->. A e. V ).
2:1: |- (. A e. V ->. ( [. A / x ]. <. w ,. y >. e. B <-> [_ A / x ]_ <. w , y >. e. [_ A / x ]_ B ) ).
3:1: |- (. A e. V ->. [_ A / x ]_ <. w ,. y >. = <. w , y >. ).
4:3: |- (. A e. V ->. ( [_ A / x ]_ <. w ,. y >. e. [_ A / x ]_ B <-> <. w , y >. e. [_ A / x ]_ B ) ).
5:2,4: |- (. A e. V ->. ( [. A / x ]. <. w ,. y >. e. B <-> <. w , y >. e. [_ A / x ]_ B ) ).
6:5: |- (. A e. V ->. A. w ( [. A / x ]. <. w ,. y >. e. B <-> <. w , y >. e. [_ A / x ]_ B ) ).
7:6: |- (. A e. V ->. ( E. w [. A / x ]. <. w ,. y >. e. B <-> E. w <. w , y >. e. [_ A / x ]_ B ) ).
8:1: |- (. A e. V ->. ( E. w [. A / x ]. <. w ,. y >. e. B <-> [. A / x ]. E. w <. w , y >. e. B ) ).
9:7,8: |- (. A e. V ->. ( [. A / x ]. E. w <. w ,. y >. e. B <-> E. w <. w , y >. e. [_ A / x ]_ B ) ).
10:9: |- (. A e. V ->. A. y ( [. A / x ]. E. w <. w , y >. e. B <-> E. w <. w , y >. e. [_ A / x ]_ B ) ).
11:10: |- (. A e. V ->. { y | [. A / x ]. E. w <. w , y >. e. B } = { y | E. w <. w , y >. e. [_ A / x ]_ B } ).
12:1: |- (. A e. V ->. [_ A / x ]_ { y | E. w <. w , y >. e. B } = { y | [. A / x ]. E. w <. w , y >. e. B } ).
13:11,12: |- (. A e. V ->. [_ A / x ]_ { y | E. w <. w , y >. e. B } = { y | E. w <. w , y >. e. [_ A / x ]_ B } ).
14:: |- ran B = { y | E. w <. w ,. y >. e. B }
15:14: |- A. x ran B = { y | E. w <. w ,. y >. e. B }
16:1,15: |- (. A e. V ->. [_ A / x ]_ ran B = [_ A / x ]_ { y | E. w <. w , y >. e. B } ).
17:13,16: |- (. A e. V ->. [_ A / x ]_ ran B = { y | E. w <. w , y >. e. [_ A / x ]_ B } ).
18:: |- ran [_ A / x ]_ B = { y | E. w <. w ,. y >. e. [_ A / x ]_ B }
19:17,18: |- (. A e. V ->. [_ A / x ]_ ran B = ran [_ A / x ]_ B ).
qed:19: |- ( A e. V -> [_ A / x ]_ ran B = ran [_ A / x ]_ B )
(Contributed by Alan Sare, 10-Nov-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion csbrngVD AVA/xranB=ranA/xB

Proof

Step Hyp Ref Expression
1 idn1 AVAV
2 sbcel12 [˙A/x]˙wyBA/xwyA/xB
3 2 a1i AV[˙A/x]˙wyBA/xwyA/xB
4 1 3 e1a AV[˙A/x]˙wyBA/xwyA/xB
5 csbconstg AVA/xwy=wy
6 1 5 e1a AVA/xwy=wy
7 eleq1 A/xwy=wyA/xwyA/xBwyA/xB
8 6 7 e1a AVA/xwyA/xBwyA/xB
9 bibi1 [˙A/x]˙wyBA/xwyA/xB[˙A/x]˙wyBwyA/xBA/xwyA/xBwyA/xB
10 9 biimprd [˙A/x]˙wyBA/xwyA/xBA/xwyA/xBwyA/xB[˙A/x]˙wyBwyA/xB
11 4 8 10 e11 AV[˙A/x]˙wyBwyA/xB
12 11 gen11 AVw[˙A/x]˙wyBwyA/xB
13 exbi w[˙A/x]˙wyBwyA/xBw[˙A/x]˙wyBwwyA/xB
14 12 13 e1a AVw[˙A/x]˙wyBwwyA/xB
15 sbcex2 [˙A/x]˙wwyBw[˙A/x]˙wyB
16 15 a1i AV[˙A/x]˙wwyBw[˙A/x]˙wyB
17 16 bicomd AVw[˙A/x]˙wyB[˙A/x]˙wwyB
18 1 17 e1a AVw[˙A/x]˙wyB[˙A/x]˙wwyB
19 bitr3 w[˙A/x]˙wyB[˙A/x]˙wwyBw[˙A/x]˙wyBwwyA/xB[˙A/x]˙wwyBwwyA/xB
20 19 com12 w[˙A/x]˙wyBwwyA/xBw[˙A/x]˙wyB[˙A/x]˙wwyB[˙A/x]˙wwyBwwyA/xB
21 14 18 20 e11 AV[˙A/x]˙wwyBwwyA/xB
22 21 gen11 AVy[˙A/x]˙wwyBwwyA/xB
23 abbib y|[˙A/x]˙wwyB=y|wwyA/xBy[˙A/x]˙wwyBwwyA/xB
24 23 biimpri y[˙A/x]˙wwyBwwyA/xBy|[˙A/x]˙wwyB=y|wwyA/xB
25 22 24 e1a AVy|[˙A/x]˙wwyB=y|wwyA/xB
26 csbab A/xy|wwyB=y|[˙A/x]˙wwyB
27 26 a1i AVA/xy|wwyB=y|[˙A/x]˙wwyB
28 1 27 e1a AVA/xy|wwyB=y|[˙A/x]˙wwyB
29 eqeq2 y|[˙A/x]˙wwyB=y|wwyA/xBA/xy|wwyB=y|[˙A/x]˙wwyBA/xy|wwyB=y|wwyA/xB
30 29 biimpd y|[˙A/x]˙wwyB=y|wwyA/xBA/xy|wwyB=y|[˙A/x]˙wwyBA/xy|wwyB=y|wwyA/xB
31 25 28 30 e11 AVA/xy|wwyB=y|wwyA/xB
32 dfrn3 ranB=y|wwyB
33 32 ax-gen xranB=y|wwyB
34 csbeq2 xranB=y|wwyBA/xranB=A/xy|wwyB
35 34 a1i AVxranB=y|wwyBA/xranB=A/xy|wwyB
36 1 33 35 e10 AVA/xranB=A/xy|wwyB
37 eqeq2 A/xy|wwyB=y|wwyA/xBA/xranB=A/xy|wwyBA/xranB=y|wwyA/xB
38 37 biimpd A/xy|wwyB=y|wwyA/xBA/xranB=A/xy|wwyBA/xranB=y|wwyA/xB
39 31 36 38 e11 AVA/xranB=y|wwyA/xB
40 dfrn3 ranA/xB=y|wwyA/xB
41 eqeq2 ranA/xB=y|wwyA/xBA/xranB=ranA/xBA/xranB=y|wwyA/xB
42 41 biimprcd A/xranB=y|wwyA/xBranA/xB=y|wwyA/xBA/xranB=ranA/xB
43 39 40 42 e10 AVA/xranB=ranA/xB
44 43 in1 AVA/xranB=ranA/xB