Metamath Proof Explorer


Theorem cusgrfilem1

Description: Lemma 1 for cusgrfi . (Contributed by Alexander van der Vekens, 13-Jan-2018) (Revised by AV, 11-Nov-2020)

Ref Expression
Hypotheses cusgrfi.v V=VtxG
cusgrfi.p P=x𝒫V|aVaNx=aN
Assertion cusgrfilem1 GComplUSGraphNVPEdgG

Proof

Step Hyp Ref Expression
1 cusgrfi.v V=VtxG
2 cusgrfi.p P=x𝒫V|aVaNx=aN
3 eqid EdgG=EdgG
4 1 3 cusgredg GComplUSGraphEdgG=x𝒫V|x=2
5 fveq2 x=aNx=aN
6 5 ad2antlr aNx=aNaVNVx𝒫Vx=aN
7 hashprg aVNVaNaN=2
8 7 adantrr aVNVx𝒫VaNaN=2
9 8 biimpcd aNaVNVx𝒫VaN=2
10 9 adantr aNx=aNaVNVx𝒫VaN=2
11 10 imp aNx=aNaVNVx𝒫VaN=2
12 6 11 eqtrd aNx=aNaVNVx𝒫Vx=2
13 12 an13s NVx𝒫VaVaNx=aNx=2
14 13 rexlimdvaa NVx𝒫VaVaNx=aNx=2
15 14 ss2rabdv NVx𝒫V|aVaNx=aNx𝒫V|x=2
16 2 a1i EdgG=x𝒫V|x=2P=x𝒫V|aVaNx=aN
17 id EdgG=x𝒫V|x=2EdgG=x𝒫V|x=2
18 16 17 sseq12d EdgG=x𝒫V|x=2PEdgGx𝒫V|aVaNx=aNx𝒫V|x=2
19 15 18 imbitrrid EdgG=x𝒫V|x=2NVPEdgG
20 4 19 syl GComplUSGraphNVPEdgG
21 20 imp GComplUSGraphNVPEdgG