Step |
Hyp |
Ref |
Expression |
1 |
|
cusgrfi.v |
|
2 |
|
cusgrfi.p |
|
3 |
|
cusgrfi.f |
|
4 |
|
eldifi |
|
5 |
|
id |
|
6 |
|
prelpwi |
|
7 |
4 5 6
|
syl2anr |
|
8 |
4
|
adantl |
|
9 |
|
eldifsni |
|
10 |
9
|
adantl |
|
11 |
|
eqidd |
|
12 |
10 11
|
jca |
|
13 |
|
id |
|
14 |
|
neeq1 |
|
15 |
|
preq1 |
|
16 |
15
|
eqeq2d |
|
17 |
14 16
|
anbi12d |
|
18 |
17
|
adantl |
|
19 |
13 18
|
rspcedv |
|
20 |
8 12 19
|
sylc |
|
21 |
2
|
eleq2i |
|
22 |
|
eqeq1 |
|
23 |
22
|
anbi2d |
|
24 |
23
|
rexbidv |
|
25 |
|
eqeq1 |
|
26 |
25
|
anbi2d |
|
27 |
26
|
rexbidv |
|
28 |
27
|
cbvrabv |
|
29 |
24 28
|
elrab2 |
|
30 |
21 29
|
bitri |
|
31 |
7 20 30
|
sylanbrc |
|
32 |
31
|
ralrimiva |
|
33 |
|
simpl |
|
34 |
33
|
anim2i |
|
35 |
34
|
adantl |
|
36 |
|
eldifsn |
|
37 |
35 36
|
sylibr |
|
38 |
|
eqeq1 |
|
39 |
38
|
adantl |
|
40 |
39
|
ad2antlr |
|
41 |
|
vex |
|
42 |
|
vex |
|
43 |
41 42
|
preqr1 |
|
44 |
43
|
equcomd |
|
45 |
40 44
|
syl6bi |
|
46 |
45
|
adantll |
|
47 |
15
|
equcoms |
|
48 |
47
|
eqeq2d |
|
49 |
48
|
biimpcd |
|
50 |
49
|
adantl |
|
51 |
50
|
adantl |
|
52 |
51
|
ad2antlr |
|
53 |
46 52
|
impbid |
|
54 |
53
|
ralrimiva |
|
55 |
37 54
|
jca |
|
56 |
55
|
ex |
|
57 |
56
|
reximdv2 |
|
58 |
57
|
expimpd |
|
59 |
|
eqeq1 |
|
60 |
59
|
anbi2d |
|
61 |
60
|
rexbidv |
|
62 |
61 2
|
elrab2 |
|
63 |
|
reu6 |
|
64 |
58 62 63
|
3imtr4g |
|
65 |
64
|
ralrimiv |
|
66 |
3
|
f1ompt |
|
67 |
32 65 66
|
sylanbrc |
|