| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cusgrfi.v |
|
| 2 |
|
cusgrfi.p |
|
| 3 |
|
cusgrfi.f |
|
| 4 |
|
eldifi |
|
| 5 |
|
id |
|
| 6 |
|
prelpwi |
|
| 7 |
4 5 6
|
syl2anr |
|
| 8 |
4
|
adantl |
|
| 9 |
|
eldifsni |
|
| 10 |
9
|
adantl |
|
| 11 |
|
eqidd |
|
| 12 |
10 11
|
jca |
|
| 13 |
|
id |
|
| 14 |
|
neeq1 |
|
| 15 |
|
preq1 |
|
| 16 |
15
|
eqeq2d |
|
| 17 |
14 16
|
anbi12d |
|
| 18 |
17
|
adantl |
|
| 19 |
13 18
|
rspcedv |
|
| 20 |
8 12 19
|
sylc |
|
| 21 |
2
|
eleq2i |
|
| 22 |
|
eqeq1 |
|
| 23 |
22
|
anbi2d |
|
| 24 |
23
|
rexbidv |
|
| 25 |
|
eqeq1 |
|
| 26 |
25
|
anbi2d |
|
| 27 |
26
|
rexbidv |
|
| 28 |
27
|
cbvrabv |
|
| 29 |
24 28
|
elrab2 |
|
| 30 |
21 29
|
bitri |
|
| 31 |
7 20 30
|
sylanbrc |
|
| 32 |
31
|
ralrimiva |
|
| 33 |
|
simpl |
|
| 34 |
33
|
anim2i |
|
| 35 |
34
|
adantl |
|
| 36 |
|
eldifsn |
|
| 37 |
35 36
|
sylibr |
|
| 38 |
|
eqeq1 |
|
| 39 |
38
|
adantl |
|
| 40 |
39
|
ad2antlr |
|
| 41 |
|
vex |
|
| 42 |
|
vex |
|
| 43 |
41 42
|
preqr1 |
|
| 44 |
43
|
equcomd |
|
| 45 |
40 44
|
biimtrdi |
|
| 46 |
45
|
adantll |
|
| 47 |
15
|
equcoms |
|
| 48 |
47
|
eqeq2d |
|
| 49 |
48
|
biimpcd |
|
| 50 |
49
|
adantl |
|
| 51 |
50
|
adantl |
|
| 52 |
51
|
ad2antlr |
|
| 53 |
46 52
|
impbid |
|
| 54 |
53
|
ralrimiva |
|
| 55 |
37 54
|
jca |
|
| 56 |
55
|
ex |
|
| 57 |
56
|
reximdv2 |
|
| 58 |
57
|
expimpd |
|
| 59 |
|
eqeq1 |
|
| 60 |
59
|
anbi2d |
|
| 61 |
60
|
rexbidv |
|
| 62 |
61 2
|
elrab2 |
|
| 63 |
|
reu6 |
|
| 64 |
58 62 63
|
3imtr4g |
|
| 65 |
64
|
ralrimiv |
|
| 66 |
3
|
f1ompt |
|
| 67 |
32 65 66
|
sylanbrc |
|