Metamath Proof Explorer


Theorem cvlatcvr2

Description: An atom is covered by its join with a different atom. (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses cvlatcvr1.j ˙=joinK
cvlatcvr1.c C=K
cvlatcvr1.a A=AtomsK
Assertion cvlatcvr2 KOMLKCLatKCvLatPAQAPQPCQ˙P

Proof

Step Hyp Ref Expression
1 cvlatcvr1.j ˙=joinK
2 cvlatcvr1.c C=K
3 cvlatcvr1.a A=AtomsK
4 1 2 3 cvlatcvr1 KOMLKCLatKCvLatPAQAPQPCP˙Q
5 simp13 KOMLKCLatKCvLatPAQAKCvLat
6 cvllat KCvLatKLat
7 5 6 syl KOMLKCLatKCvLatPAQAKLat
8 eqid BaseK=BaseK
9 8 3 atbase PAPBaseK
10 9 3ad2ant2 KOMLKCLatKCvLatPAQAPBaseK
11 8 3 atbase QAQBaseK
12 11 3ad2ant3 KOMLKCLatKCvLatPAQAQBaseK
13 8 1 latjcom KLatPBaseKQBaseKP˙Q=Q˙P
14 7 10 12 13 syl3anc KOMLKCLatKCvLatPAQAP˙Q=Q˙P
15 14 breq2d KOMLKCLatKCvLatPAQAPCP˙QPCQ˙P
16 4 15 bitrd KOMLKCLatKCvLatPAQAPQPCQ˙P