Metamath Proof Explorer


Theorem cvnbtwn4

Description: The covers relation implies no in-betweenness. Part of proof of Lemma 7.5.1 of MaedaMaeda p. 31. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cvnbtwn4 ACBCCCABACCBC=AC=B

Proof

Step Hyp Ref Expression
1 cvnbtwn ACBCCCAB¬ACCB
2 iman ACCBC=AC=B¬ACCB¬C=AC=B
3 an4 ACCB¬A=C¬C=BAC¬A=CCB¬C=B
4 ioran ¬C=AC=B¬C=A¬C=B
5 eqcom C=AA=C
6 5 notbii ¬C=A¬A=C
7 6 anbi1i ¬C=A¬C=B¬A=C¬C=B
8 4 7 bitri ¬C=AC=B¬A=C¬C=B
9 8 anbi2i ACCB¬C=AC=BACCB¬A=C¬C=B
10 dfpss2 ACAC¬A=C
11 dfpss2 CBCB¬C=B
12 10 11 anbi12i ACCBAC¬A=CCB¬C=B
13 3 9 12 3bitr4i ACCB¬C=AC=BACCB
14 13 notbii ¬ACCB¬C=AC=B¬ACCB
15 2 14 bitr2i ¬ACCBACCBC=AC=B
16 1 15 imbitrdi ACBCCCABACCBC=AC=B