Metamath Proof Explorer


Theorem cvrat42

Description: Commuted version of cvrat4 . (Contributed by NM, 28-Jan-2012)

Ref Expression
Hypotheses cvrat4.b B=BaseK
cvrat4.l ˙=K
cvrat4.j ˙=joinK
cvrat4.z 0˙=0.K
cvrat4.a A=AtomsK
Assertion cvrat42 KHLXBPAQAX0˙P˙X˙QrAr˙XP˙r˙Q

Proof

Step Hyp Ref Expression
1 cvrat4.b B=BaseK
2 cvrat4.l ˙=K
3 cvrat4.j ˙=joinK
4 cvrat4.z 0˙=0.K
5 cvrat4.a A=AtomsK
6 1 2 3 4 5 cvrat4 KHLXBPAQAX0˙P˙X˙QrAr˙XP˙Q˙r
7 hllat KHLKLat
8 7 ad2antrr KHLXBPAQArAKLat
9 simplr3 KHLXBPAQArAQA
10 1 5 atbase QAQB
11 9 10 syl KHLXBPAQArAQB
12 1 5 atbase rArB
13 12 adantl KHLXBPAQArArB
14 1 3 latjcom KLatQBrBQ˙r=r˙Q
15 8 11 13 14 syl3anc KHLXBPAQArAQ˙r=r˙Q
16 15 breq2d KHLXBPAQArAP˙Q˙rP˙r˙Q
17 16 anbi2d KHLXBPAQArAr˙XP˙Q˙rr˙XP˙r˙Q
18 17 rexbidva KHLXBPAQArAr˙XP˙Q˙rrAr˙XP˙r˙Q
19 6 18 sylibd KHLXBPAQAX0˙P˙X˙QrAr˙XP˙r˙Q