Metamath Proof Explorer


Theorem cvsdiveqd

Description: An equality involving ratios in a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019)

Ref Expression
Hypotheses cvsdiveqd.v V=BaseW
cvsdiveqd.t ·˙=W
cvsdiveqd.f F=ScalarW
cvsdiveqd.k K=BaseF
cvsdiveqd.w φWℂVec
cvsdiveqd.a φAK
cvsdiveqd.b φBK
cvsdiveqd.x φXV
cvsdiveqd.y φYV
cvsdiveqd.1 φA0
cvsdiveqd.2 φB0
cvsdiveqd.3 φX=AB·˙Y
Assertion cvsdiveqd φBA·˙X=Y

Proof

Step Hyp Ref Expression
1 cvsdiveqd.v V=BaseW
2 cvsdiveqd.t ·˙=W
3 cvsdiveqd.f F=ScalarW
4 cvsdiveqd.k K=BaseF
5 cvsdiveqd.w φWℂVec
6 cvsdiveqd.a φAK
7 cvsdiveqd.b φBK
8 cvsdiveqd.x φXV
9 cvsdiveqd.y φYV
10 cvsdiveqd.1 φA0
11 cvsdiveqd.2 φB0
12 cvsdiveqd.3 φX=AB·˙Y
13 12 oveq2d φBA·˙X=BA·˙AB·˙Y
14 5 cvsclm φWCMod
15 3 4 clmsscn WCModK
16 14 15 syl φK
17 16 7 sseldd φB
18 16 6 sseldd φA
19 17 18 11 10 divcan6d φBAAB=1
20 19 oveq1d φBAAB·˙Y=1·˙Y
21 3 4 cvsdivcl WℂVecBKAKA0BAK
22 5 7 6 10 21 syl13anc φBAK
23 3 4 cvsdivcl WℂVecAKBKB0ABK
24 5 6 7 11 23 syl13anc φABK
25 1 3 2 4 clmvsass WCModBAKABKYVBAAB·˙Y=BA·˙AB·˙Y
26 14 22 24 9 25 syl13anc φBAAB·˙Y=BA·˙AB·˙Y
27 1 2 clmvs1 WCModYV1·˙Y=Y
28 14 9 27 syl2anc φ1·˙Y=Y
29 20 26 28 3eqtr3d φBA·˙AB·˙Y=Y
30 13 29 eqtrd φBA·˙X=Y