Metamath Proof Explorer


Theorem cxple3

Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Assertion cxple3 A + A < 1 B C B C A C A B

Proof

Step Hyp Ref Expression
1 cxplt3 A + A < 1 C B C < B A B < A C
2 1 ancom2s A + A < 1 B C C < B A B < A C
3 2 notbid A + A < 1 B C ¬ C < B ¬ A B < A C
4 lenlt B C B C ¬ C < B
5 4 adantl A + A < 1 B C B C ¬ C < B
6 rpcxpcl A + C A C +
7 6 ad2ant2rl A + A < 1 B C A C +
8 rpcxpcl A + B A B +
9 8 ad2ant2r A + A < 1 B C A B +
10 rpre A C + A C
11 rpre A B + A B
12 lenlt A C A B A C A B ¬ A B < A C
13 10 11 12 syl2an A C + A B + A C A B ¬ A B < A C
14 7 9 13 syl2anc A + A < 1 B C A C A B ¬ A B < A C
15 3 5 14 3bitr4d A + A < 1 B C B C A C A B