Metamath Proof Explorer


Theorem cxpsqrtlem

Description: Lemma for cxpsqrt . (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxpsqrtlem A A 0 A 1 2 = A i A

Proof

Step Hyp Ref Expression
1 ax-icn i
2 sqrtcl A A
3 2 ad2antrr A A 0 A 1 2 = A A
4 mulcl i A i A
5 1 3 4 sylancr A A 0 A 1 2 = A i A
6 imval i A i A = i A i
7 5 6 syl A A 0 A 1 2 = A i A = i A i
8 ine0 i 0
9 divcan3 A i i 0 i A i = A
10 1 8 9 mp3an23 A i A i = A
11 3 10 syl A A 0 A 1 2 = A i A i = A
12 11 fveq2d A A 0 A 1 2 = A i A i = A
13 halfre 1 2
14 13 recni 1 2
15 logcl A A 0 log A
16 mulcl 1 2 log A 1 2 log A
17 14 15 16 sylancr A A 0 1 2 log A
18 17 recld A A 0 1 2 log A
19 18 reefcld A A 0 e 1 2 log A
20 17 imcld A A 0 1 2 log A
21 20 recoscld A A 0 cos 1 2 log A
22 18 rpefcld A A 0 e 1 2 log A +
23 22 rpge0d A A 0 0 e 1 2 log A
24 immul2 1 2 log A 1 2 log A = 1 2 log A
25 13 15 24 sylancr A A 0 1 2 log A = 1 2 log A
26 15 imcld A A 0 log A
27 26 recnd A A 0 log A
28 mulcom 1 2 log A 1 2 log A = log A 1 2
29 14 27 28 sylancr A A 0 1 2 log A = log A 1 2
30 25 29 eqtrd A A 0 1 2 log A = log A 1 2
31 logimcl A A 0 π < log A log A π
32 31 simpld A A 0 π < log A
33 pire π
34 33 renegcli π
35 ltle π log A π < log A π log A
36 34 26 35 sylancr A A 0 π < log A π log A
37 32 36 mpd A A 0 π log A
38 31 simprd A A 0 log A π
39 34 33 elicc2i log A π π log A π log A log A π
40 26 37 38 39 syl3anbrc A A 0 log A π π
41 halfgt0 0 < 1 2
42 13 41 elrpii 1 2 +
43 33 recni π
44 2cn 2
45 2ne0 2 0
46 divneg π 2 2 0 π 2 = π 2
47 43 44 45 46 mp3an π 2 = π 2
48 34 recni π
49 48 44 45 divreci π 2 = π 1 2
50 47 49 eqtr2i π 1 2 = π 2
51 43 44 45 divreci π 2 = π 1 2
52 51 eqcomi π 1 2 = π 2
53 34 33 42 50 52 iccdili log A π π log A 1 2 π 2 π 2
54 40 53 syl A A 0 log A 1 2 π 2 π 2
55 30 54 eqeltrd A A 0 1 2 log A π 2 π 2
56 cosq14ge0 1 2 log A π 2 π 2 0 cos 1 2 log A
57 55 56 syl A A 0 0 cos 1 2 log A
58 19 21 23 57 mulge0d A A 0 0 e 1 2 log A cos 1 2 log A
59 cxpef A A 0 1 2 A 1 2 = e 1 2 log A
60 14 59 mp3an3 A A 0 A 1 2 = e 1 2 log A
61 efeul 1 2 log A e 1 2 log A = e 1 2 log A cos 1 2 log A + i sin 1 2 log A
62 17 61 syl A A 0 e 1 2 log A = e 1 2 log A cos 1 2 log A + i sin 1 2 log A
63 60 62 eqtrd A A 0 A 1 2 = e 1 2 log A cos 1 2 log A + i sin 1 2 log A
64 63 fveq2d A A 0 A 1 2 = e 1 2 log A cos 1 2 log A + i sin 1 2 log A
65 21 recnd A A 0 cos 1 2 log A
66 20 resincld A A 0 sin 1 2 log A
67 66 recnd A A 0 sin 1 2 log A
68 mulcl i sin 1 2 log A i sin 1 2 log A
69 1 67 68 sylancr A A 0 i sin 1 2 log A
70 65 69 addcld A A 0 cos 1 2 log A + i sin 1 2 log A
71 19 70 remul2d A A 0 e 1 2 log A cos 1 2 log A + i sin 1 2 log A = e 1 2 log A cos 1 2 log A + i sin 1 2 log A
72 21 66 crred A A 0 cos 1 2 log A + i sin 1 2 log A = cos 1 2 log A
73 72 oveq2d A A 0 e 1 2 log A cos 1 2 log A + i sin 1 2 log A = e 1 2 log A cos 1 2 log A
74 64 71 73 3eqtrd A A 0 A 1 2 = e 1 2 log A cos 1 2 log A
75 58 74 breqtrrd A A 0 0 A 1 2
76 75 adantr A A 0 A 1 2 = A 0 A 1 2
77 simpr A A 0 A 1 2 = A A 1 2 = A
78 77 fveq2d A A 0 A 1 2 = A A 1 2 = A
79 3 renegd A A 0 A 1 2 = A A = A
80 78 79 eqtrd A A 0 A 1 2 = A A 1 2 = A
81 76 80 breqtrd A A 0 A 1 2 = A 0 A
82 3 recld A A 0 A 1 2 = A A
83 82 le0neg1d A A 0 A 1 2 = A A 0 0 A
84 81 83 mpbird A A 0 A 1 2 = A A 0
85 sqrtrege0 A 0 A
86 85 ad2antrr A A 0 A 1 2 = A 0 A
87 0re 0
88 letri3 A 0 A = 0 A 0 0 A
89 82 87 88 sylancl A A 0 A 1 2 = A A = 0 A 0 0 A
90 84 86 89 mpbir2and A A 0 A 1 2 = A A = 0
91 7 12 90 3eqtrd A A 0 A 1 2 = A i A = 0
92 5 91 reim0bd A A 0 A 1 2 = A i A