| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-icn |
|- _i e. CC |
| 2 |
|
sqrtcl |
|- ( A e. CC -> ( sqrt ` A ) e. CC ) |
| 3 |
2
|
ad2antrr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( sqrt ` A ) e. CC ) |
| 4 |
|
mulcl |
|- ( ( _i e. CC /\ ( sqrt ` A ) e. CC ) -> ( _i x. ( sqrt ` A ) ) e. CC ) |
| 5 |
1 3 4
|
sylancr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( _i x. ( sqrt ` A ) ) e. CC ) |
| 6 |
|
imval |
|- ( ( _i x. ( sqrt ` A ) ) e. CC -> ( Im ` ( _i x. ( sqrt ` A ) ) ) = ( Re ` ( ( _i x. ( sqrt ` A ) ) / _i ) ) ) |
| 7 |
5 6
|
syl |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( Im ` ( _i x. ( sqrt ` A ) ) ) = ( Re ` ( ( _i x. ( sqrt ` A ) ) / _i ) ) ) |
| 8 |
|
ine0 |
|- _i =/= 0 |
| 9 |
|
divcan3 |
|- ( ( ( sqrt ` A ) e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( ( _i x. ( sqrt ` A ) ) / _i ) = ( sqrt ` A ) ) |
| 10 |
1 8 9
|
mp3an23 |
|- ( ( sqrt ` A ) e. CC -> ( ( _i x. ( sqrt ` A ) ) / _i ) = ( sqrt ` A ) ) |
| 11 |
3 10
|
syl |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( _i x. ( sqrt ` A ) ) / _i ) = ( sqrt ` A ) ) |
| 12 |
11
|
fveq2d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( Re ` ( ( _i x. ( sqrt ` A ) ) / _i ) ) = ( Re ` ( sqrt ` A ) ) ) |
| 13 |
|
halfre |
|- ( 1 / 2 ) e. RR |
| 14 |
13
|
recni |
|- ( 1 / 2 ) e. CC |
| 15 |
|
logcl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
| 16 |
|
mulcl |
|- ( ( ( 1 / 2 ) e. CC /\ ( log ` A ) e. CC ) -> ( ( 1 / 2 ) x. ( log ` A ) ) e. CC ) |
| 17 |
14 15 16
|
sylancr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( 1 / 2 ) x. ( log ` A ) ) e. CC ) |
| 18 |
17
|
recld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) e. RR ) |
| 19 |
18
|
reefcld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) e. RR ) |
| 20 |
17
|
imcld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) e. RR ) |
| 21 |
20
|
recoscld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) e. RR ) |
| 22 |
18
|
rpefcld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) e. RR+ ) |
| 23 |
22
|
rpge0d |
|- ( ( A e. CC /\ A =/= 0 ) -> 0 <_ ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) |
| 24 |
|
immul2 |
|- ( ( ( 1 / 2 ) e. RR /\ ( log ` A ) e. CC ) -> ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) = ( ( 1 / 2 ) x. ( Im ` ( log ` A ) ) ) ) |
| 25 |
13 15 24
|
sylancr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) = ( ( 1 / 2 ) x. ( Im ` ( log ` A ) ) ) ) |
| 26 |
15
|
imcld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( log ` A ) ) e. RR ) |
| 27 |
26
|
recnd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( log ` A ) ) e. CC ) |
| 28 |
|
mulcom |
|- ( ( ( 1 / 2 ) e. CC /\ ( Im ` ( log ` A ) ) e. CC ) -> ( ( 1 / 2 ) x. ( Im ` ( log ` A ) ) ) = ( ( Im ` ( log ` A ) ) x. ( 1 / 2 ) ) ) |
| 29 |
14 27 28
|
sylancr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( 1 / 2 ) x. ( Im ` ( log ` A ) ) ) = ( ( Im ` ( log ` A ) ) x. ( 1 / 2 ) ) ) |
| 30 |
25 29
|
eqtrd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) = ( ( Im ` ( log ` A ) ) x. ( 1 / 2 ) ) ) |
| 31 |
|
logimcl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( -u _pi < ( Im ` ( log ` A ) ) /\ ( Im ` ( log ` A ) ) <_ _pi ) ) |
| 32 |
31
|
simpld |
|- ( ( A e. CC /\ A =/= 0 ) -> -u _pi < ( Im ` ( log ` A ) ) ) |
| 33 |
|
pire |
|- _pi e. RR |
| 34 |
33
|
renegcli |
|- -u _pi e. RR |
| 35 |
|
ltle |
|- ( ( -u _pi e. RR /\ ( Im ` ( log ` A ) ) e. RR ) -> ( -u _pi < ( Im ` ( log ` A ) ) -> -u _pi <_ ( Im ` ( log ` A ) ) ) ) |
| 36 |
34 26 35
|
sylancr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( -u _pi < ( Im ` ( log ` A ) ) -> -u _pi <_ ( Im ` ( log ` A ) ) ) ) |
| 37 |
32 36
|
mpd |
|- ( ( A e. CC /\ A =/= 0 ) -> -u _pi <_ ( Im ` ( log ` A ) ) ) |
| 38 |
31
|
simprd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( log ` A ) ) <_ _pi ) |
| 39 |
34 33
|
elicc2i |
|- ( ( Im ` ( log ` A ) ) e. ( -u _pi [,] _pi ) <-> ( ( Im ` ( log ` A ) ) e. RR /\ -u _pi <_ ( Im ` ( log ` A ) ) /\ ( Im ` ( log ` A ) ) <_ _pi ) ) |
| 40 |
26 37 38 39
|
syl3anbrc |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( log ` A ) ) e. ( -u _pi [,] _pi ) ) |
| 41 |
|
halfgt0 |
|- 0 < ( 1 / 2 ) |
| 42 |
13 41
|
elrpii |
|- ( 1 / 2 ) e. RR+ |
| 43 |
33
|
recni |
|- _pi e. CC |
| 44 |
|
2cn |
|- 2 e. CC |
| 45 |
|
2ne0 |
|- 2 =/= 0 |
| 46 |
|
divneg |
|- ( ( _pi e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( _pi / 2 ) = ( -u _pi / 2 ) ) |
| 47 |
43 44 45 46
|
mp3an |
|- -u ( _pi / 2 ) = ( -u _pi / 2 ) |
| 48 |
34
|
recni |
|- -u _pi e. CC |
| 49 |
48 44 45
|
divreci |
|- ( -u _pi / 2 ) = ( -u _pi x. ( 1 / 2 ) ) |
| 50 |
47 49
|
eqtr2i |
|- ( -u _pi x. ( 1 / 2 ) ) = -u ( _pi / 2 ) |
| 51 |
43 44 45
|
divreci |
|- ( _pi / 2 ) = ( _pi x. ( 1 / 2 ) ) |
| 52 |
51
|
eqcomi |
|- ( _pi x. ( 1 / 2 ) ) = ( _pi / 2 ) |
| 53 |
34 33 42 50 52
|
iccdili |
|- ( ( Im ` ( log ` A ) ) e. ( -u _pi [,] _pi ) -> ( ( Im ` ( log ` A ) ) x. ( 1 / 2 ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| 54 |
40 53
|
syl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( Im ` ( log ` A ) ) x. ( 1 / 2 ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| 55 |
30 54
|
eqeltrd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| 56 |
|
cosq14ge0 |
|- ( ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> 0 <_ ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) |
| 57 |
55 56
|
syl |
|- ( ( A e. CC /\ A =/= 0 ) -> 0 <_ ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) |
| 58 |
19 21 23 57
|
mulge0d |
|- ( ( A e. CC /\ A =/= 0 ) -> 0 <_ ( ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) x. ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) |
| 59 |
|
cxpef |
|- ( ( A e. CC /\ A =/= 0 /\ ( 1 / 2 ) e. CC ) -> ( A ^c ( 1 / 2 ) ) = ( exp ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) |
| 60 |
14 59
|
mp3an3 |
|- ( ( A e. CC /\ A =/= 0 ) -> ( A ^c ( 1 / 2 ) ) = ( exp ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) |
| 61 |
|
efeul |
|- ( ( ( 1 / 2 ) x. ( log ` A ) ) e. CC -> ( exp ` ( ( 1 / 2 ) x. ( log ` A ) ) ) = ( ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) x. ( ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) + ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) ) ) |
| 62 |
17 61
|
syl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( ( 1 / 2 ) x. ( log ` A ) ) ) = ( ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) x. ( ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) + ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) ) ) |
| 63 |
60 62
|
eqtrd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( A ^c ( 1 / 2 ) ) = ( ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) x. ( ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) + ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) ) ) |
| 64 |
63
|
fveq2d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( A ^c ( 1 / 2 ) ) ) = ( Re ` ( ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) x. ( ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) + ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) ) ) ) |
| 65 |
21
|
recnd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) e. CC ) |
| 66 |
20
|
resincld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) e. RR ) |
| 67 |
66
|
recnd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) e. CC ) |
| 68 |
|
mulcl |
|- ( ( _i e. CC /\ ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) e. CC ) -> ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) e. CC ) |
| 69 |
1 67 68
|
sylancr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) e. CC ) |
| 70 |
65 69
|
addcld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) + ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) e. CC ) |
| 71 |
19 70
|
remul2d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) x. ( ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) + ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) ) ) = ( ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) x. ( Re ` ( ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) + ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) ) ) ) |
| 72 |
21 66
|
crred |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) + ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) ) = ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) |
| 73 |
72
|
oveq2d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) x. ( Re ` ( ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) + ( _i x. ( sin ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) ) ) = ( ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) x. ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) |
| 74 |
64 71 73
|
3eqtrd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( A ^c ( 1 / 2 ) ) ) = ( ( exp ` ( Re ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) x. ( cos ` ( Im ` ( ( 1 / 2 ) x. ( log ` A ) ) ) ) ) ) |
| 75 |
58 74
|
breqtrrd |
|- ( ( A e. CC /\ A =/= 0 ) -> 0 <_ ( Re ` ( A ^c ( 1 / 2 ) ) ) ) |
| 76 |
75
|
adantr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> 0 <_ ( Re ` ( A ^c ( 1 / 2 ) ) ) ) |
| 77 |
|
simpr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) |
| 78 |
77
|
fveq2d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( Re ` ( A ^c ( 1 / 2 ) ) ) = ( Re ` -u ( sqrt ` A ) ) ) |
| 79 |
3
|
renegd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( Re ` -u ( sqrt ` A ) ) = -u ( Re ` ( sqrt ` A ) ) ) |
| 80 |
78 79
|
eqtrd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( Re ` ( A ^c ( 1 / 2 ) ) ) = -u ( Re ` ( sqrt ` A ) ) ) |
| 81 |
76 80
|
breqtrd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> 0 <_ -u ( Re ` ( sqrt ` A ) ) ) |
| 82 |
3
|
recld |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( Re ` ( sqrt ` A ) ) e. RR ) |
| 83 |
82
|
le0neg1d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( Re ` ( sqrt ` A ) ) <_ 0 <-> 0 <_ -u ( Re ` ( sqrt ` A ) ) ) ) |
| 84 |
81 83
|
mpbird |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( Re ` ( sqrt ` A ) ) <_ 0 ) |
| 85 |
|
sqrtrege0 |
|- ( A e. CC -> 0 <_ ( Re ` ( sqrt ` A ) ) ) |
| 86 |
85
|
ad2antrr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> 0 <_ ( Re ` ( sqrt ` A ) ) ) |
| 87 |
|
0re |
|- 0 e. RR |
| 88 |
|
letri3 |
|- ( ( ( Re ` ( sqrt ` A ) ) e. RR /\ 0 e. RR ) -> ( ( Re ` ( sqrt ` A ) ) = 0 <-> ( ( Re ` ( sqrt ` A ) ) <_ 0 /\ 0 <_ ( Re ` ( sqrt ` A ) ) ) ) ) |
| 89 |
82 87 88
|
sylancl |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( ( Re ` ( sqrt ` A ) ) = 0 <-> ( ( Re ` ( sqrt ` A ) ) <_ 0 /\ 0 <_ ( Re ` ( sqrt ` A ) ) ) ) ) |
| 90 |
84 86 89
|
mpbir2and |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( Re ` ( sqrt ` A ) ) = 0 ) |
| 91 |
7 12 90
|
3eqtrd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( Im ` ( _i x. ( sqrt ` A ) ) ) = 0 ) |
| 92 |
5 91
|
reim0bd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqrt ` A ) ) -> ( _i x. ( sqrt ` A ) ) e. RR ) |