Metamath Proof Explorer


Theorem cxplt3

Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Assertion cxplt3 A+A<1BCB<CAC<AB

Proof

Step Hyp Ref Expression
1 simpll A+A<1BCA+
2 simprl A+A<1BCB
3 2 recnd A+A<1BCB
4 cxprec A+B1AB=1AB
5 1 3 4 syl2anc A+A<1BC1AB=1AB
6 simprr A+A<1BCC
7 6 recnd A+A<1BCC
8 cxprec A+C1AC=1AC
9 1 7 8 syl2anc A+A<1BC1AC=1AC
10 5 9 breq12d A+A<1BC1AB<1AC1AB<1AC
11 1 rprecred A+A<1BC1A
12 simplr A+A<1BCA<1
13 1 reclt1d A+A<1BCA<11<1A
14 12 13 mpbid A+A<1BC1<1A
15 cxplt 1A1<1ABCB<C1AB<1AC
16 11 14 2 6 15 syl22anc A+A<1BCB<C1AB<1AC
17 rpcxpcl A+CAC+
18 17 ad2ant2rl A+A<1BCAC+
19 rpcxpcl A+BAB+
20 19 ad2ant2r A+A<1BCAB+
21 18 20 ltrecd A+A<1BCAC<AB1AB<1AC
22 10 16 21 3bitr4d A+A<1BCB<CAC<AB