Metamath Proof Explorer


Theorem cytpval

Description: Substitutions for the Nth cyclotomic polynomial. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses cytpval.t T=mulGrpfld𝑠0
cytpval.o O=odT
cytpval.p P=Poly1fld
cytpval.x X=var1fld
cytpval.q Q=mulGrpP
cytpval.m -˙=-P
cytpval.a A=algScP
Assertion cytpval NCytPN=QrO-1NX-˙Ar

Proof

Step Hyp Ref Expression
1 cytpval.t T=mulGrpfld𝑠0
2 cytpval.o O=odT
3 cytpval.p P=Poly1fld
4 cytpval.x X=var1fld
5 cytpval.q Q=mulGrpP
6 cytpval.m -˙=-P
7 cytpval.a A=algScP
8 3 eqcomi Poly1fld=P
9 8 fveq2i mulGrpPoly1fld=mulGrpP
10 9 5 eqtr4i mulGrpPoly1fld=Q
11 10 a1i n=NmulGrpPoly1fld=Q
12 1 fveq2i odT=odmulGrpfld𝑠0
13 2 12 eqtri O=odmulGrpfld𝑠0
14 13 cnveqi O-1=odmulGrpfld𝑠0-1
15 14 imaeq1i O-1n=odmulGrpfld𝑠0-1n
16 sneq n=Nn=N
17 16 imaeq2d n=NO-1n=O-1N
18 15 17 eqtr3id n=NodmulGrpfld𝑠0-1n=O-1N
19 3 fveq2i algScP=algScPoly1fld
20 7 19 eqtri A=algScPoly1fld
21 20 fveq1i Ar=algScPoly1fldr
22 3 fveq2i -P=-Poly1fld
23 6 22 eqtri -˙=-Poly1fld
24 4 21 23 oveq123i X-˙Ar=var1fld-Poly1fldalgScPoly1fldr
25 24 eqcomi var1fld-Poly1fldalgScPoly1fldr=X-˙Ar
26 25 a1i n=Nvar1fld-Poly1fldalgScPoly1fldr=X-˙Ar
27 18 26 mpteq12dv n=NrodmulGrpfld𝑠0-1nvar1fld-Poly1fldalgScPoly1fldr=rO-1NX-˙Ar
28 11 27 oveq12d n=NmulGrpPoly1fldrodmulGrpfld𝑠0-1nvar1fld-Poly1fldalgScPoly1fldr=QrO-1NX-˙Ar
29 df-cytp CytP=nmulGrpPoly1fldrodmulGrpfld𝑠0-1nvar1fld-Poly1fldalgScPoly1fldr
30 ovex QrO-1NX-˙ArV
31 28 29 30 fvmpt NCytPN=QrO-1NX-˙Ar