Metamath Proof Explorer


Theorem cznabel

Description: The ring constructed from a Z/nZ structure by replacing the (multiplicative) ring operation by a constant operation is an abelian group. (Contributed by AV, 16-Feb-2020)

Ref Expression
Hypotheses cznrng.y Y = /N
cznrng.b B = Base Y
cznrng.x X = Y sSet ndx x B , y B C
Assertion cznabel N C B X Abel

Proof

Step Hyp Ref Expression
1 cznrng.y Y = /N
2 cznrng.b B = Base Y
3 cznrng.x X = Y sSet ndx x B , y B C
4 nnnn0 N N 0
5 4 adantr N C B N 0
6 1 zncrng N 0 Y CRing
7 crngring Y CRing Y Ring
8 ringabl Y Ring Y Abel
9 5 6 7 8 4syl N C B Y Abel
10 3 fveq2i Base X = Base Y sSet ndx x B , y B C
11 baseid Base = Slot Base ndx
12 basendxnmulrndx Base ndx ndx
13 11 12 setsnid Base Y = Base Y sSet ndx x B , y B C
14 10 13 eqtr4i Base X = Base Y
15 3 fveq2i + X = + Y sSet ndx x B , y B C
16 plusgid + 𝑔 = Slot + ndx
17 plusgndxnmulrndx + ndx ndx
18 16 17 setsnid + Y = + Y sSet ndx x B , y B C
19 15 18 eqtr4i + X = + Y
20 14 19 ablprop X Abel Y Abel
21 9 20 sylibr N C B X Abel