Metamath Proof Explorer


Theorem dalawlem2

Description: Lemma for dalaw . Utility lemma that breaks ( ( P .\/ Q ) ./\ ( S .\/ T ) ) into a join of two pieces. (Contributed by NM, 6-Oct-2012)

Ref Expression
Hypotheses dalawlem.l ˙=K
dalawlem.j ˙=joinK
dalawlem.m ˙=meetK
dalawlem.a A=AtomsK
Assertion dalawlem2 KHLPAQASATAP˙Q˙S˙T˙P˙Q˙T˙S˙P˙Q˙S˙T

Proof

Step Hyp Ref Expression
1 dalawlem.l ˙=K
2 dalawlem.j ˙=joinK
3 dalawlem.m ˙=meetK
4 dalawlem.a A=AtomsK
5 simp1 KHLPAQASATAKHL
6 5 hllatd KHLPAQASATAKLat
7 simp2l KHLPAQASATAPA
8 simp2r KHLPAQASATAQA
9 eqid BaseK=BaseK
10 9 2 4 hlatjcl KHLPAQAP˙QBaseK
11 5 7 8 10 syl3anc KHLPAQASATAP˙QBaseK
12 simp3r KHLPAQASATATA
13 9 4 atbase TATBaseK
14 12 13 syl KHLPAQASATATBaseK
15 9 1 2 latlej1 KLatP˙QBaseKTBaseKP˙Q˙P˙Q˙T
16 6 11 14 15 syl3anc KHLPAQASATAP˙Q˙P˙Q˙T
17 simp3l KHLPAQASATASA
18 9 4 atbase SASBaseK
19 17 18 syl KHLPAQASATASBaseK
20 9 1 2 latlej1 KLatP˙QBaseKSBaseKP˙Q˙P˙Q˙S
21 6 11 19 20 syl3anc KHLPAQASATAP˙Q˙P˙Q˙S
22 9 2 latjcl KLatP˙QBaseKTBaseKP˙Q˙TBaseK
23 6 11 14 22 syl3anc KHLPAQASATAP˙Q˙TBaseK
24 9 2 latjcl KLatP˙QBaseKSBaseKP˙Q˙SBaseK
25 6 11 19 24 syl3anc KHLPAQASATAP˙Q˙SBaseK
26 9 1 3 latlem12 KLatP˙QBaseKP˙Q˙TBaseKP˙Q˙SBaseKP˙Q˙P˙Q˙TP˙Q˙P˙Q˙SP˙Q˙P˙Q˙T˙P˙Q˙S
27 6 11 23 25 26 syl13anc KHLPAQASATAP˙Q˙P˙Q˙TP˙Q˙P˙Q˙SP˙Q˙P˙Q˙T˙P˙Q˙S
28 16 21 27 mpbi2and KHLPAQASATAP˙Q˙P˙Q˙T˙P˙Q˙S
29 9 3 latmcl KLatP˙Q˙TBaseKP˙Q˙SBaseKP˙Q˙T˙P˙Q˙SBaseK
30 6 23 25 29 syl3anc KHLPAQASATAP˙Q˙T˙P˙Q˙SBaseK
31 9 2 4 hlatjcl KHLSATAS˙TBaseK
32 5 17 12 31 syl3anc KHLPAQASATAS˙TBaseK
33 9 1 3 latmlem1 KLatP˙QBaseKP˙Q˙T˙P˙Q˙SBaseKS˙TBaseKP˙Q˙P˙Q˙T˙P˙Q˙SP˙Q˙S˙T˙P˙Q˙T˙P˙Q˙S˙S˙T
34 6 11 30 32 33 syl13anc KHLPAQASATAP˙Q˙P˙Q˙T˙P˙Q˙SP˙Q˙S˙T˙P˙Q˙T˙P˙Q˙S˙S˙T
35 28 34 mpd KHLPAQASATAP˙Q˙S˙T˙P˙Q˙T˙P˙Q˙S˙S˙T
36 9 1 2 latlej2 KLatP˙QBaseKSBaseKS˙P˙Q˙S
37 6 11 19 36 syl3anc KHLPAQASATAS˙P˙Q˙S
38 9 1 2 3 4 atmod3i1 KHLSAP˙Q˙SBaseKTBaseKS˙P˙Q˙SS˙P˙Q˙S˙T=P˙Q˙S˙S˙T
39 5 17 25 14 37 38 syl131anc KHLPAQASATAS˙P˙Q˙S˙T=P˙Q˙S˙S˙T
40 39 oveq2d KHLPAQASATAP˙Q˙T˙S˙P˙Q˙S˙T=P˙Q˙T˙P˙Q˙S˙S˙T
41 9 3 latmcl KLatP˙Q˙SBaseKTBaseKP˙Q˙S˙TBaseK
42 6 25 14 41 syl3anc KHLPAQASATAP˙Q˙S˙TBaseK
43 9 1 2 3 latmlej22 KLatTBaseKP˙Q˙SBaseKP˙QBaseKP˙Q˙S˙T˙P˙Q˙T
44 6 14 25 11 43 syl13anc KHLPAQASATAP˙Q˙S˙T˙P˙Q˙T
45 9 1 2 3 4 atmod2i2 KHLSAP˙Q˙TBaseKP˙Q˙S˙TBaseKP˙Q˙S˙T˙P˙Q˙TP˙Q˙T˙S˙P˙Q˙S˙T=P˙Q˙T˙S˙P˙Q˙S˙T
46 5 17 23 42 44 45 syl131anc KHLPAQASATAP˙Q˙T˙S˙P˙Q˙S˙T=P˙Q˙T˙S˙P˙Q˙S˙T
47 hlol KHLKOL
48 5 47 syl KHLPAQASATAKOL
49 9 3 latmassOLD KOLP˙Q˙TBaseKP˙Q˙SBaseKS˙TBaseKP˙Q˙T˙P˙Q˙S˙S˙T=P˙Q˙T˙P˙Q˙S˙S˙T
50 48 23 25 32 49 syl13anc KHLPAQASATAP˙Q˙T˙P˙Q˙S˙S˙T=P˙Q˙T˙P˙Q˙S˙S˙T
51 40 46 50 3eqtr4rd KHLPAQASATAP˙Q˙T˙P˙Q˙S˙S˙T=P˙Q˙T˙S˙P˙Q˙S˙T
52 35 51 breqtrd KHLPAQASATAP˙Q˙S˙T˙P˙Q˙T˙S˙P˙Q˙S˙T