Description: Lemma for dalaw . Utility lemma that breaks ( ( P .\/ Q ) ./\ ( S .\/ T ) ) into a join of two pieces. (Contributed by NM, 6-Oct-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dalawlem.l | |
|
dalawlem.j | |
||
dalawlem.m | |
||
dalawlem.a | |
||
Assertion | dalawlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalawlem.l | |
|
2 | dalawlem.j | |
|
3 | dalawlem.m | |
|
4 | dalawlem.a | |
|
5 | simp1 | |
|
6 | 5 | hllatd | |
7 | simp2l | |
|
8 | simp2r | |
|
9 | eqid | |
|
10 | 9 2 4 | hlatjcl | |
11 | 5 7 8 10 | syl3anc | |
12 | simp3r | |
|
13 | 9 4 | atbase | |
14 | 12 13 | syl | |
15 | 9 1 2 | latlej1 | |
16 | 6 11 14 15 | syl3anc | |
17 | simp3l | |
|
18 | 9 4 | atbase | |
19 | 17 18 | syl | |
20 | 9 1 2 | latlej1 | |
21 | 6 11 19 20 | syl3anc | |
22 | 9 2 | latjcl | |
23 | 6 11 14 22 | syl3anc | |
24 | 9 2 | latjcl | |
25 | 6 11 19 24 | syl3anc | |
26 | 9 1 3 | latlem12 | |
27 | 6 11 23 25 26 | syl13anc | |
28 | 16 21 27 | mpbi2and | |
29 | 9 3 | latmcl | |
30 | 6 23 25 29 | syl3anc | |
31 | 9 2 4 | hlatjcl | |
32 | 5 17 12 31 | syl3anc | |
33 | 9 1 3 | latmlem1 | |
34 | 6 11 30 32 33 | syl13anc | |
35 | 28 34 | mpd | |
36 | 9 1 2 | latlej2 | |
37 | 6 11 19 36 | syl3anc | |
38 | 9 1 2 3 4 | atmod3i1 | |
39 | 5 17 25 14 37 38 | syl131anc | |
40 | 39 | oveq2d | |
41 | 9 3 | latmcl | |
42 | 6 25 14 41 | syl3anc | |
43 | 9 1 2 3 | latmlej22 | |
44 | 6 14 25 11 43 | syl13anc | |
45 | 9 1 2 3 4 | atmod2i2 | |
46 | 5 17 23 42 44 45 | syl131anc | |
47 | hlol | |
|
48 | 5 47 | syl | |
49 | 9 3 | latmassOLD | |
50 | 48 23 25 32 49 | syl13anc | |
51 | 40 46 50 | 3eqtr4rd | |
52 | 35 51 | breqtrd | |