| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dalawlem.l |  | 
						
							| 2 |  | dalawlem.j |  | 
						
							| 3 |  | dalawlem.m |  | 
						
							| 4 |  | dalawlem.a |  | 
						
							| 5 |  | simp11 |  | 
						
							| 6 |  | simp12 |  | 
						
							| 7 | 5 | hllatd |  | 
						
							| 8 |  | simp22 |  | 
						
							| 9 |  | simp32 |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 | 10 2 4 | hlatjcl |  | 
						
							| 12 | 5 8 9 11 | syl3anc |  | 
						
							| 13 |  | simp21 |  | 
						
							| 14 |  | simp31 |  | 
						
							| 15 | 10 2 4 | hlatjcl |  | 
						
							| 16 | 5 13 14 15 | syl3anc |  | 
						
							| 17 | 10 3 | latmcom |  | 
						
							| 18 | 7 12 16 17 | syl3anc |  | 
						
							| 19 | 2 4 | hlatjcom |  | 
						
							| 20 | 5 8 13 19 | syl3anc |  | 
						
							| 21 | 6 18 20 | 3brtr4d |  | 
						
							| 22 |  | simp13 |  | 
						
							| 23 | 18 22 | eqbrtrd |  | 
						
							| 24 |  | simp23 |  | 
						
							| 25 |  | simp33 |  | 
						
							| 26 | 1 2 3 4 | dalawlem3 |  | 
						
							| 27 | 5 21 23 8 13 24 9 14 25 26 | syl333anc |  | 
						
							| 28 | 2 4 | hlatjcom |  | 
						
							| 29 | 5 13 24 28 | syl3anc |  | 
						
							| 30 | 2 4 | hlatjcom |  | 
						
							| 31 | 5 14 25 30 | syl3anc |  | 
						
							| 32 | 29 31 | oveq12d |  | 
						
							| 33 | 2 4 | hlatjcom |  | 
						
							| 34 | 5 24 8 33 | syl3anc |  | 
						
							| 35 | 2 4 | hlatjcom |  | 
						
							| 36 | 5 25 9 35 | syl3anc |  | 
						
							| 37 | 34 36 | oveq12d |  | 
						
							| 38 | 32 37 | oveq12d |  | 
						
							| 39 | 10 2 4 | hlatjcl |  | 
						
							| 40 | 5 24 13 39 | syl3anc |  | 
						
							| 41 | 10 2 4 | hlatjcl |  | 
						
							| 42 | 5 25 14 41 | syl3anc |  | 
						
							| 43 | 10 3 | latmcl |  | 
						
							| 44 | 7 40 42 43 | syl3anc |  | 
						
							| 45 | 10 2 4 | hlatjcl |  | 
						
							| 46 | 5 8 24 45 | syl3anc |  | 
						
							| 47 | 10 2 4 | hlatjcl |  | 
						
							| 48 | 5 9 25 47 | syl3anc |  | 
						
							| 49 | 10 3 | latmcl |  | 
						
							| 50 | 7 46 48 49 | syl3anc |  | 
						
							| 51 | 10 2 | latjcom |  | 
						
							| 52 | 7 44 50 51 | syl3anc |  | 
						
							| 53 | 38 52 | eqtrd |  | 
						
							| 54 | 27 53 | breqtrd |  |