| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dalawlem.l |
|
| 2 |
|
dalawlem.j |
|
| 3 |
|
dalawlem.m |
|
| 4 |
|
dalawlem.a |
|
| 5 |
|
simp11 |
|
| 6 |
|
simp12 |
|
| 7 |
5
|
hllatd |
|
| 8 |
|
simp22 |
|
| 9 |
|
simp32 |
|
| 10 |
|
eqid |
|
| 11 |
10 2 4
|
hlatjcl |
|
| 12 |
5 8 9 11
|
syl3anc |
|
| 13 |
|
simp21 |
|
| 14 |
|
simp31 |
|
| 15 |
10 2 4
|
hlatjcl |
|
| 16 |
5 13 14 15
|
syl3anc |
|
| 17 |
10 3
|
latmcom |
|
| 18 |
7 12 16 17
|
syl3anc |
|
| 19 |
2 4
|
hlatjcom |
|
| 20 |
5 8 13 19
|
syl3anc |
|
| 21 |
6 18 20
|
3brtr4d |
|
| 22 |
|
simp13 |
|
| 23 |
18 22
|
eqbrtrd |
|
| 24 |
|
simp23 |
|
| 25 |
|
simp33 |
|
| 26 |
1 2 3 4
|
dalawlem3 |
|
| 27 |
5 21 23 8 13 24 9 14 25 26
|
syl333anc |
|
| 28 |
2 4
|
hlatjcom |
|
| 29 |
5 13 24 28
|
syl3anc |
|
| 30 |
2 4
|
hlatjcom |
|
| 31 |
5 14 25 30
|
syl3anc |
|
| 32 |
29 31
|
oveq12d |
|
| 33 |
2 4
|
hlatjcom |
|
| 34 |
5 24 8 33
|
syl3anc |
|
| 35 |
2 4
|
hlatjcom |
|
| 36 |
5 25 9 35
|
syl3anc |
|
| 37 |
34 36
|
oveq12d |
|
| 38 |
32 37
|
oveq12d |
|
| 39 |
10 2 4
|
hlatjcl |
|
| 40 |
5 24 13 39
|
syl3anc |
|
| 41 |
10 2 4
|
hlatjcl |
|
| 42 |
5 25 14 41
|
syl3anc |
|
| 43 |
10 3
|
latmcl |
|
| 44 |
7 40 42 43
|
syl3anc |
|
| 45 |
10 2 4
|
hlatjcl |
|
| 46 |
5 8 24 45
|
syl3anc |
|
| 47 |
10 2 4
|
hlatjcl |
|
| 48 |
5 9 25 47
|
syl3anc |
|
| 49 |
10 3
|
latmcl |
|
| 50 |
7 46 48 49
|
syl3anc |
|
| 51 |
10 2
|
latjcom |
|
| 52 |
7 44 50 51
|
syl3anc |
|
| 53 |
38 52
|
eqtrd |
|
| 54 |
27 53
|
breqtrd |
|