Description: Lemma for dalaw . Second piece of dalawlem5 . (Contributed by NM, 4-Oct-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dalawlem.l | |
|
dalawlem.j | |
||
dalawlem.m | |
||
dalawlem.a | |
||
Assertion | dalawlem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalawlem.l | |
|
2 | dalawlem.j | |
|
3 | dalawlem.m | |
|
4 | dalawlem.a | |
|
5 | simp11 | |
|
6 | simp12 | |
|
7 | 5 | hllatd | |
8 | simp22 | |
|
9 | simp32 | |
|
10 | eqid | |
|
11 | 10 2 4 | hlatjcl | |
12 | 5 8 9 11 | syl3anc | |
13 | simp21 | |
|
14 | simp31 | |
|
15 | 10 2 4 | hlatjcl | |
16 | 5 13 14 15 | syl3anc | |
17 | 10 3 | latmcom | |
18 | 7 12 16 17 | syl3anc | |
19 | 2 4 | hlatjcom | |
20 | 5 8 13 19 | syl3anc | |
21 | 6 18 20 | 3brtr4d | |
22 | simp13 | |
|
23 | 18 22 | eqbrtrd | |
24 | simp23 | |
|
25 | simp33 | |
|
26 | 1 2 3 4 | dalawlem3 | |
27 | 5 21 23 8 13 24 9 14 25 26 | syl333anc | |
28 | 2 4 | hlatjcom | |
29 | 5 13 24 28 | syl3anc | |
30 | 2 4 | hlatjcom | |
31 | 5 14 25 30 | syl3anc | |
32 | 29 31 | oveq12d | |
33 | 2 4 | hlatjcom | |
34 | 5 24 8 33 | syl3anc | |
35 | 2 4 | hlatjcom | |
36 | 5 25 9 35 | syl3anc | |
37 | 34 36 | oveq12d | |
38 | 32 37 | oveq12d | |
39 | 10 2 4 | hlatjcl | |
40 | 5 24 13 39 | syl3anc | |
41 | 10 2 4 | hlatjcl | |
42 | 5 25 14 41 | syl3anc | |
43 | 10 3 | latmcl | |
44 | 7 40 42 43 | syl3anc | |
45 | 10 2 4 | hlatjcl | |
46 | 5 8 24 45 | syl3anc | |
47 | 10 2 4 | hlatjcl | |
48 | 5 9 25 47 | syl3anc | |
49 | 10 3 | latmcl | |
50 | 7 46 48 49 | syl3anc | |
51 | 10 2 | latjcom | |
52 | 7 44 50 51 | syl3anc | |
53 | 38 52 | eqtrd | |
54 | 27 53 | breqtrd | |