Metamath Proof Explorer


Theorem dalawlem4

Description: Lemma for dalaw . Second piece of dalawlem5 . (Contributed by NM, 4-Oct-2012)

Ref Expression
Hypotheses dalawlem.l ˙=K
dalawlem.j ˙=joinK
dalawlem.m ˙=meetK
dalawlem.a A=AtomsK
Assertion dalawlem4 KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙T˙Q˙R˙T˙U˙R˙P˙U˙S

Proof

Step Hyp Ref Expression
1 dalawlem.l ˙=K
2 dalawlem.j ˙=joinK
3 dalawlem.m ˙=meetK
4 dalawlem.a A=AtomsK
5 simp11 KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAKHL
6 simp12 KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙T˙P˙Q
7 5 hllatd KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAKLat
8 simp22 KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQA
9 simp32 KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUATA
10 eqid BaseK=BaseK
11 10 2 4 hlatjcl KHLQATAQ˙TBaseK
12 5 8 9 11 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙TBaseK
13 simp21 KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAPA
14 simp31 KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUASA
15 10 2 4 hlatjcl KHLPASAP˙SBaseK
16 5 13 14 15 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAP˙SBaseK
17 10 3 latmcom KLatQ˙TBaseKP˙SBaseKQ˙T˙P˙S=P˙S˙Q˙T
18 7 12 16 17 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S=P˙S˙Q˙T
19 2 4 hlatjcom KHLQAPAQ˙P=P˙Q
20 5 8 13 19 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙P=P˙Q
21 6 18 20 3brtr4d KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S˙Q˙P
22 simp13 KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙T˙R˙U
23 18 22 eqbrtrd KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S˙R˙U
24 simp23 KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUARA
25 simp33 KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAUA
26 1 2 3 4 dalawlem3 KHLQ˙T˙P˙S˙Q˙PQ˙T˙P˙S˙R˙UQAPARATASAUAP˙S˙Q˙T˙P˙R˙S˙U˙R˙Q˙U˙T
27 5 21 23 8 13 24 9 14 25 26 syl333anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙T˙P˙R˙S˙U˙R˙Q˙U˙T
28 2 4 hlatjcom KHLPARAP˙R=R˙P
29 5 13 24 28 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAP˙R=R˙P
30 2 4 hlatjcom KHLSAUAS˙U=U˙S
31 5 14 25 30 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAS˙U=U˙S
32 29 31 oveq12d KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAP˙R˙S˙U=R˙P˙U˙S
33 2 4 hlatjcom KHLRAQAR˙Q=Q˙R
34 5 24 8 33 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAR˙Q=Q˙R
35 2 4 hlatjcom KHLUATAU˙T=T˙U
36 5 25 9 35 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAU˙T=T˙U
37 34 36 oveq12d KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAR˙Q˙U˙T=Q˙R˙T˙U
38 32 37 oveq12d KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAP˙R˙S˙U˙R˙Q˙U˙T=R˙P˙U˙S˙Q˙R˙T˙U
39 10 2 4 hlatjcl KHLRAPAR˙PBaseK
40 5 24 13 39 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAR˙PBaseK
41 10 2 4 hlatjcl KHLUASAU˙SBaseK
42 5 25 14 41 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAU˙SBaseK
43 10 3 latmcl KLatR˙PBaseKU˙SBaseKR˙P˙U˙SBaseK
44 7 40 42 43 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAR˙P˙U˙SBaseK
45 10 2 4 hlatjcl KHLQARAQ˙RBaseK
46 5 8 24 45 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙RBaseK
47 10 2 4 hlatjcl KHLTAUAT˙UBaseK
48 5 9 25 47 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAT˙UBaseK
49 10 3 latmcl KLatQ˙RBaseKT˙UBaseKQ˙R˙T˙UBaseK
50 7 46 48 49 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙T˙UBaseK
51 10 2 latjcom KLatR˙P˙U˙SBaseKQ˙R˙T˙UBaseKR˙P˙U˙S˙Q˙R˙T˙U=Q˙R˙T˙U˙R˙P˙U˙S
52 7 44 50 51 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAR˙P˙U˙S˙Q˙R˙T˙U=Q˙R˙T˙U˙R˙P˙U˙S
53 38 52 eqtrd KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAP˙R˙S˙U˙R˙Q˙U˙T=Q˙R˙T˙U˙R˙P˙U˙S
54 27 53 breqtrd KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙T˙Q˙R˙T˙U˙R˙P˙U˙S