Metamath Proof Explorer


Theorem dalawlem8

Description: Lemma for dalaw . Special case to eliminate the requirement -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) in dalawlem1 . (Contributed by NM, 6-Oct-2012)

Ref Expression
Hypotheses dalawlem.l ˙=K
dalawlem.j ˙=joinK
dalawlem.m ˙=meetK
dalawlem.a A=AtomsK
Assertion dalawlem8 KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S

Proof

Step Hyp Ref Expression
1 dalawlem.l ˙=K
2 dalawlem.j ˙=joinK
3 dalawlem.m ˙=meetK
4 dalawlem.a A=AtomsK
5 eqid BaseK=BaseK
6 simp11 KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAKHL
7 6 hllatd KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAKLat
8 simp21 KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAPA
9 simp22 KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQA
10 5 2 4 hlatjcl KHLPAQAP˙QBaseK
11 6 8 9 10 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙QBaseK
12 simp31 KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUASA
13 simp32 KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUATA
14 5 2 4 hlatjcl KHLSATAS˙TBaseK
15 6 12 13 14 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAS˙TBaseK
16 5 3 latmcl KLatP˙QBaseKS˙TBaseKP˙Q˙S˙TBaseK
17 7 11 15 16 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙TBaseK
18 5 4 atbase TATBaseK
19 13 18 syl KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUATBaseK
20 5 2 latjcl KLatP˙QBaseKTBaseKP˙Q˙TBaseK
21 7 11 19 20 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙TBaseK
22 5 4 atbase SASBaseK
23 12 22 syl KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUASBaseK
24 5 3 latmcl KLatP˙Q˙TBaseKSBaseKP˙Q˙T˙SBaseK
25 7 21 23 24 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙SBaseK
26 5 2 latjcl KLatP˙QBaseKSBaseKP˙Q˙SBaseK
27 7 11 23 26 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙SBaseK
28 5 3 latmcl KLatP˙Q˙SBaseKTBaseKP˙Q˙S˙TBaseK
29 7 27 19 28 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙TBaseK
30 5 2 latjcl KLatP˙Q˙T˙SBaseKP˙Q˙S˙TBaseKP˙Q˙T˙S˙P˙Q˙S˙TBaseK
31 7 25 29 30 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙S˙P˙Q˙S˙TBaseK
32 simp23 KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUARA
33 5 2 4 hlatjcl KHLQARAQ˙RBaseK
34 6 9 32 33 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙RBaseK
35 simp33 KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAUA
36 5 2 4 hlatjcl KHLTAUAT˙UBaseK
37 6 13 35 36 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAT˙UBaseK
38 5 3 latmcl KLatQ˙RBaseKT˙UBaseKQ˙R˙T˙UBaseK
39 7 34 37 38 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙T˙UBaseK
40 5 2 4 hlatjcl KHLRAPAR˙PBaseK
41 6 32 8 40 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAR˙PBaseK
42 5 2 4 hlatjcl KHLUASAU˙SBaseK
43 6 35 12 42 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAU˙SBaseK
44 5 3 latmcl KLatR˙PBaseKU˙SBaseKR˙P˙U˙SBaseK
45 7 41 43 44 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAR˙P˙U˙SBaseK
46 5 2 latjcl KLatQ˙R˙T˙UBaseKR˙P˙U˙SBaseKQ˙R˙T˙U˙R˙P˙U˙SBaseK
47 7 39 45 46 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙T˙U˙R˙P˙U˙SBaseK
48 1 2 3 4 dalawlem2 KHLPAQASATAP˙Q˙S˙T˙P˙Q˙T˙S˙P˙Q˙S˙T
49 6 8 9 12 13 48 syl122anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙P˙Q˙T˙S˙P˙Q˙S˙T
50 1 2 3 4 dalawlem6 KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙S˙Q˙R˙T˙U˙R˙P˙U˙S
51 1 2 3 4 dalawlem7 KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S
52 5 1 2 latjle12 KLatP˙Q˙T˙SBaseKP˙Q˙S˙TBaseKQ˙R˙T˙U˙R˙P˙U˙SBaseKP˙Q˙T˙S˙Q˙R˙T˙U˙R˙P˙U˙SP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙SP˙Q˙T˙S˙P˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S
53 7 25 29 47 52 syl13anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙S˙Q˙R˙T˙U˙R˙P˙U˙SP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙SP˙Q˙T˙S˙P˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S
54 50 51 53 mpbi2and KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙S˙P˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S
55 5 1 7 17 31 47 49 54 lattrd KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S