Description: Lemma for dalaw . Special case to eliminate the requirement -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) in dalawlem1 . (Contributed by NM, 6-Oct-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dalawlem.l | |
|
dalawlem.j | |
||
dalawlem.m | |
||
dalawlem.a | |
||
Assertion | dalawlem8 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalawlem.l | |
|
2 | dalawlem.j | |
|
3 | dalawlem.m | |
|
4 | dalawlem.a | |
|
5 | eqid | |
|
6 | simp11 | |
|
7 | 6 | hllatd | |
8 | simp21 | |
|
9 | simp22 | |
|
10 | 5 2 4 | hlatjcl | |
11 | 6 8 9 10 | syl3anc | |
12 | simp31 | |
|
13 | simp32 | |
|
14 | 5 2 4 | hlatjcl | |
15 | 6 12 13 14 | syl3anc | |
16 | 5 3 | latmcl | |
17 | 7 11 15 16 | syl3anc | |
18 | 5 4 | atbase | |
19 | 13 18 | syl | |
20 | 5 2 | latjcl | |
21 | 7 11 19 20 | syl3anc | |
22 | 5 4 | atbase | |
23 | 12 22 | syl | |
24 | 5 3 | latmcl | |
25 | 7 21 23 24 | syl3anc | |
26 | 5 2 | latjcl | |
27 | 7 11 23 26 | syl3anc | |
28 | 5 3 | latmcl | |
29 | 7 27 19 28 | syl3anc | |
30 | 5 2 | latjcl | |
31 | 7 25 29 30 | syl3anc | |
32 | simp23 | |
|
33 | 5 2 4 | hlatjcl | |
34 | 6 9 32 33 | syl3anc | |
35 | simp33 | |
|
36 | 5 2 4 | hlatjcl | |
37 | 6 13 35 36 | syl3anc | |
38 | 5 3 | latmcl | |
39 | 7 34 37 38 | syl3anc | |
40 | 5 2 4 | hlatjcl | |
41 | 6 32 8 40 | syl3anc | |
42 | 5 2 4 | hlatjcl | |
43 | 6 35 12 42 | syl3anc | |
44 | 5 3 | latmcl | |
45 | 7 41 43 44 | syl3anc | |
46 | 5 2 | latjcl | |
47 | 7 39 45 46 | syl3anc | |
48 | 1 2 3 4 | dalawlem2 | |
49 | 6 8 9 12 13 48 | syl122anc | |
50 | 1 2 3 4 | dalawlem6 | |
51 | 1 2 3 4 | dalawlem7 | |
52 | 5 1 2 | latjle12 | |
53 | 7 25 29 47 52 | syl13anc | |
54 | 50 51 53 | mpbi2and | |
55 | 5 1 7 17 31 47 49 54 | lattrd | |