| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dalawlem.l |
|
| 2 |
|
dalawlem.j |
|
| 3 |
|
dalawlem.m |
|
| 4 |
|
dalawlem.a |
|
| 5 |
|
eqid |
|
| 6 |
|
simp11 |
|
| 7 |
6
|
hllatd |
|
| 8 |
|
simp21 |
|
| 9 |
|
simp22 |
|
| 10 |
5 2 4
|
hlatjcl |
|
| 11 |
6 8 9 10
|
syl3anc |
|
| 12 |
|
simp31 |
|
| 13 |
|
simp32 |
|
| 14 |
5 2 4
|
hlatjcl |
|
| 15 |
6 12 13 14
|
syl3anc |
|
| 16 |
5 3
|
latmcl |
|
| 17 |
7 11 15 16
|
syl3anc |
|
| 18 |
5 4
|
atbase |
|
| 19 |
13 18
|
syl |
|
| 20 |
5 2
|
latjcl |
|
| 21 |
7 11 19 20
|
syl3anc |
|
| 22 |
5 4
|
atbase |
|
| 23 |
12 22
|
syl |
|
| 24 |
5 3
|
latmcl |
|
| 25 |
7 21 23 24
|
syl3anc |
|
| 26 |
5 2
|
latjcl |
|
| 27 |
7 11 23 26
|
syl3anc |
|
| 28 |
5 3
|
latmcl |
|
| 29 |
7 27 19 28
|
syl3anc |
|
| 30 |
5 2
|
latjcl |
|
| 31 |
7 25 29 30
|
syl3anc |
|
| 32 |
|
simp23 |
|
| 33 |
5 2 4
|
hlatjcl |
|
| 34 |
6 9 32 33
|
syl3anc |
|
| 35 |
|
simp33 |
|
| 36 |
5 2 4
|
hlatjcl |
|
| 37 |
6 13 35 36
|
syl3anc |
|
| 38 |
5 3
|
latmcl |
|
| 39 |
7 34 37 38
|
syl3anc |
|
| 40 |
5 2 4
|
hlatjcl |
|
| 41 |
6 32 8 40
|
syl3anc |
|
| 42 |
5 2 4
|
hlatjcl |
|
| 43 |
6 35 12 42
|
syl3anc |
|
| 44 |
5 3
|
latmcl |
|
| 45 |
7 41 43 44
|
syl3anc |
|
| 46 |
5 2
|
latjcl |
|
| 47 |
7 39 45 46
|
syl3anc |
|
| 48 |
1 2 3 4
|
dalawlem2 |
|
| 49 |
6 8 9 12 13 48
|
syl122anc |
|
| 50 |
1 2 3 4
|
dalawlem6 |
|
| 51 |
1 2 3 4
|
dalawlem7 |
|
| 52 |
5 1 2
|
latjle12 |
|
| 53 |
7 25 29 47 52
|
syl13anc |
|
| 54 |
50 51 53
|
mpbi2and |
|
| 55 |
5 1 7 17 31 47 49 54
|
lattrd |
|