Metamath Proof Explorer


Theorem dalem17

Description: Lemma for dath . When planes Y and Z are equal, the center of perspectivity C is in Y . (Contributed by NM, 1-Aug-2012)

Ref Expression
Hypotheses dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalemc.l ˙=K
dalemc.j ˙=joinK
dalemc.a A=AtomsK
dalem17.o O=LPlanesK
dalem17.y Y=P˙Q˙R
dalem17.z Z=S˙T˙U
Assertion dalem17 φY=ZC˙Y

Proof

Step Hyp Ref Expression
1 dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalemc.l ˙=K
3 dalemc.j ˙=joinK
4 dalemc.a A=AtomsK
5 dalem17.o O=LPlanesK
6 dalem17.y Y=P˙Q˙R
7 dalem17.z Z=S˙T˙U
8 1 dalemclrju φC˙R˙U
9 8 adantr φY=ZC˙R˙U
10 1 dalemkelat φKLat
11 1 3 4 dalempjqeb φP˙QBaseK
12 1 4 dalemreb φRBaseK
13 eqid BaseK=BaseK
14 13 2 3 latlej2 KLatP˙QBaseKRBaseKR˙P˙Q˙R
15 10 11 12 14 syl3anc φR˙P˙Q˙R
16 15 6 breqtrrdi φR˙Y
17 16 adantr φY=ZR˙Y
18 1 3 4 dalemsjteb φS˙TBaseK
19 1 4 dalemueb φUBaseK
20 13 2 3 latlej2 KLatS˙TBaseKUBaseKU˙S˙T˙U
21 10 18 19 20 syl3anc φU˙S˙T˙U
22 21 7 breqtrrdi φU˙Z
23 22 adantr φY=ZU˙Z
24 simpr φY=ZY=Z
25 23 24 breqtrrd φY=ZU˙Y
26 1 5 dalemyeb φYBaseK
27 13 2 3 latjle12 KLatRBaseKUBaseKYBaseKR˙YU˙YR˙U˙Y
28 10 12 19 26 27 syl13anc φR˙YU˙YR˙U˙Y
29 28 adantr φY=ZR˙YU˙YR˙U˙Y
30 17 25 29 mpbi2and φY=ZR˙U˙Y
31 1 4 dalemceb φCBaseK
32 1 dalemkehl φKHL
33 1 dalemrea φRA
34 1 dalemuea φUA
35 13 3 4 hlatjcl KHLRAUAR˙UBaseK
36 32 33 34 35 syl3anc φR˙UBaseK
37 13 2 lattr KLatCBaseKR˙UBaseKYBaseKC˙R˙UR˙U˙YC˙Y
38 10 31 36 26 37 syl13anc φC˙R˙UR˙U˙YC˙Y
39 38 adantr φY=ZC˙R˙UR˙U˙YC˙Y
40 9 30 39 mp2and φY=ZC˙Y