Metamath Proof Explorer


Theorem dalem38

Description: Lemma for dath . Plane Y belongs to the 3-dimensional volume G H I c . (Contributed by NM, 5-Aug-2012)

Ref Expression
Hypotheses dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalem.l ˙=K
dalem.j ˙=joinK
dalem.a A=AtomsK
dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
dalem38.m ˙=meetK
dalem38.o O=LPlanesK
dalem38.y Y=P˙Q˙R
dalem38.z Z=S˙T˙U
dalem38.g G=c˙P˙d˙S
dalem38.h H=c˙Q˙d˙T
dalem38.i I=c˙R˙d˙U
Assertion dalem38 φY=ZψY˙G˙H˙I˙c

Proof

Step Hyp Ref Expression
1 dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalem.l ˙=K
3 dalem.j ˙=joinK
4 dalem.a A=AtomsK
5 dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
6 dalem38.m ˙=meetK
7 dalem38.o O=LPlanesK
8 dalem38.y Y=P˙Q˙R
9 dalem38.z Z=S˙T˙U
10 dalem38.g G=c˙P˙d˙S
11 dalem38.h H=c˙Q˙d˙T
12 dalem38.i I=c˙R˙d˙U
13 1 2 3 4 5 6 7 8 9 10 dalem28 φY=ZψP˙G˙c
14 1 2 3 4 5 6 7 8 9 11 dalem33 φY=ZψQ˙H˙c
15 1 dalemkelat φKLat
16 15 3ad2ant1 φY=ZψKLat
17 1 4 dalempeb φPBaseK
18 17 3ad2ant1 φY=ZψPBaseK
19 1 dalemkehl φKHL
20 19 3ad2ant1 φY=ZψKHL
21 1 2 3 4 5 6 7 8 9 10 dalem23 φY=ZψGA
22 5 dalemccea ψcA
23 22 3ad2ant3 φY=ZψcA
24 eqid BaseK=BaseK
25 24 3 4 hlatjcl KHLGAcAG˙cBaseK
26 20 21 23 25 syl3anc φY=ZψG˙cBaseK
27 1 4 dalemqeb φQBaseK
28 27 3ad2ant1 φY=ZψQBaseK
29 1 2 3 4 5 6 7 8 9 11 dalem29 φY=ZψHA
30 24 3 4 hlatjcl KHLHAcAH˙cBaseK
31 20 29 23 30 syl3anc φY=ZψH˙cBaseK
32 24 2 3 latjlej12 KLatPBaseKG˙cBaseKQBaseKH˙cBaseKP˙G˙cQ˙H˙cP˙Q˙G˙c˙H˙c
33 16 18 26 28 31 32 syl122anc φY=ZψP˙G˙cQ˙H˙cP˙Q˙G˙c˙H˙c
34 13 14 33 mp2and φY=ZψP˙Q˙G˙c˙H˙c
35 24 4 atbase GAGBaseK
36 21 35 syl φY=ZψGBaseK
37 24 4 atbase HAHBaseK
38 29 37 syl φY=ZψHBaseK
39 5 4 dalemcceb ψcBaseK
40 39 3ad2ant3 φY=ZψcBaseK
41 24 3 latjjdir KLatGBaseKHBaseKcBaseKG˙H˙c=G˙c˙H˙c
42 16 36 38 40 41 syl13anc φY=ZψG˙H˙c=G˙c˙H˙c
43 34 42 breqtrrd φY=ZψP˙Q˙G˙H˙c
44 1 2 3 4 5 6 7 8 9 12 dalem37 φY=ZψR˙I˙c
45 1 3 4 dalempjqeb φP˙QBaseK
46 45 3ad2ant1 φY=ZψP˙QBaseK
47 24 3 4 hlatjcl KHLGAHAG˙HBaseK
48 20 21 29 47 syl3anc φY=ZψG˙HBaseK
49 24 3 latjcl KLatG˙HBaseKcBaseKG˙H˙cBaseK
50 16 48 40 49 syl3anc φY=ZψG˙H˙cBaseK
51 1 4 dalemreb φRBaseK
52 51 3ad2ant1 φY=ZψRBaseK
53 1 2 3 4 5 6 7 8 9 12 dalem34 φY=ZψIA
54 24 3 4 hlatjcl KHLIAcAI˙cBaseK
55 20 53 23 54 syl3anc φY=ZψI˙cBaseK
56 24 2 3 latjlej12 KLatP˙QBaseKG˙H˙cBaseKRBaseKI˙cBaseKP˙Q˙G˙H˙cR˙I˙cP˙Q˙R˙G˙H˙c˙I˙c
57 16 46 50 52 55 56 syl122anc φY=ZψP˙Q˙G˙H˙cR˙I˙cP˙Q˙R˙G˙H˙c˙I˙c
58 43 44 57 mp2and φY=ZψP˙Q˙R˙G˙H˙c˙I˙c
59 24 4 atbase IAIBaseK
60 53 59 syl φY=ZψIBaseK
61 24 3 latjjdir KLatG˙HBaseKIBaseKcBaseKG˙H˙I˙c=G˙H˙c˙I˙c
62 16 48 60 40 61 syl13anc φY=ZψG˙H˙I˙c=G˙H˙c˙I˙c
63 58 62 breqtrrd φY=ZψP˙Q˙R˙G˙H˙I˙c
64 8 63 eqbrtrid φY=ZψY˙G˙H˙I˙c