Metamath Proof Explorer


Theorem deg1le0

Description: A polynomial has nonpositive degree iff it is a constant. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypotheses deg1le0.d D=deg1R
deg1le0.p P=Poly1R
deg1le0.b B=BaseP
deg1le0.a A=algScP
Assertion deg1le0 RRingFBDF0F=Acoe1F0

Proof

Step Hyp Ref Expression
1 deg1le0.d D=deg1R
2 deg1le0.p P=Poly1R
3 deg1le0.b B=BaseP
4 deg1le0.a A=algScP
5 eqid 1𝑜mPolyR=1𝑜mPolyR
6 1 deg1fval D=1𝑜mDegR
7 1on 1𝑜On
8 7 a1i RRingFB1𝑜On
9 simpl RRingFBRRing
10 eqid PwSer1R=PwSer1R
11 2 10 3 ply1bas B=Base1𝑜mPolyR
12 2 4 ply1ascl A=algSc1𝑜mPolyR
13 simpr RRingFBFB
14 5 6 8 9 11 12 13 mdegle0 RRingFBDF0F=AF1𝑜×0
15 0nn0 00
16 eqid coe1F=coe1F
17 16 coe1fv FB00coe1F0=F1𝑜×0
18 13 15 17 sylancl RRingFBcoe1F0=F1𝑜×0
19 18 fveq2d RRingFBAcoe1F0=AF1𝑜×0
20 19 eqeq2d RRingFBF=Acoe1F0F=AF1𝑜×0
21 14 20 bitr4d RRingFBDF0F=Acoe1F0