Metamath Proof Explorer


Theorem dfhe3

Description: The property of relation R being hereditary in class A . (Contributed by RP, 27-Mar-2020)

Ref Expression
Assertion dfhe3 RhereditaryAxxAyxRyyA

Proof

Step Hyp Ref Expression
1 df-he RhereditaryARAA
2 19.21v yxAxRyyAxAyxRyyA
3 2 bicomi xAyxRyyAyxAxRyyA
4 3 albii xxAyxRyyAxyxAxRyyA
5 alcom xyxAxRyyAyxxAxRyyA
6 impexp xAxRyyAxAxRyyA
7 6 bicomi xAxRyyAxAxRyyA
8 7 albii xxAxRyyAxxAxRyyA
9 19.23v xxAxRyyAxxAxRyyA
10 8 9 bitri xxAxRyyAxxAxRyyA
11 10 albii yxxAxRyyAyxxAxRyyA
12 4 5 11 3bitri xxAyxRyyAyxxAxRyyA
13 dfss2 z|xxAxzRAyyz|xxAxzRyA
14 vex yV
15 opeq2 z=yxz=xy
16 15 eleq1d z=yxzRxyR
17 df-br xRyxyR
18 16 17 bitr4di z=yxzRxRy
19 18 anbi2d z=yxAxzRxAxRy
20 19 exbidv z=yxxAxzRxxAxRy
21 14 20 elab yz|xxAxzRxxAxRy
22 21 imbi1i yz|xxAxzRyAxxAxRyyA
23 22 albii yyz|xxAxzRyAyxxAxRyyA
24 13 23 bitr2i yxxAxRyyAz|xxAxzRA
25 dfima3 RA=z|xxAxzR
26 25 eqcomi z|xxAxzR=RA
27 26 sseq1i z|xxAxzRARAA
28 24 27 bitri yxxAxRyyARAA
29 12 28 bitr2i RAAxxAyxRyyA
30 1 29 bitri RhereditaryAxxAyxRyyA