Metamath Proof Explorer


Theorem dfiso3

Description: Alternate definition of an isomorphism of a category as a section in both directions. (Contributed by AV, 11-Apr-2020)

Ref Expression
Hypotheses dfiso3.b B=BaseC
dfiso3.h H=HomC
dfiso3.i I=IsoC
dfiso3.s S=SectC
dfiso3.c φCCat
dfiso3.x φXB
dfiso3.y φYB
dfiso3.f φFXHY
Assertion dfiso3 φFXIYgYHXgYSXFFXSYg

Proof

Step Hyp Ref Expression
1 dfiso3.b B=BaseC
2 dfiso3.h H=HomC
3 dfiso3.i I=IsoC
4 dfiso3.s S=SectC
5 dfiso3.c φCCat
6 dfiso3.x φXB
7 dfiso3.y φYB
8 dfiso3.f φFXHY
9 eqid IdC=IdC
10 eqid XYcompCX=XYcompCX
11 eqid YXcompCY=YXcompCY
12 1 2 5 3 6 7 8 9 10 11 dfiso2 φFXIYgYHXgXYcompCXF=IdCXFYXcompCYg=IdCY
13 eqid compC=compC
14 5 adantr φgYHXCCat
15 7 adantr φgYHXYB
16 6 adantr φgYHXXB
17 simpr φgYHXgYHX
18 8 adantr φgYHXFXHY
19 1 2 13 9 4 14 15 16 17 18 issect2 φgYHXgYSXFFYXcompCYg=IdCY
20 1 2 13 9 4 14 16 15 18 17 issect2 φgYHXFXSYggXYcompCXF=IdCX
21 19 20 anbi12d φgYHXgYSXFFXSYgFYXcompCYg=IdCYgXYcompCXF=IdCX
22 ancom FYXcompCYg=IdCYgXYcompCXF=IdCXgXYcompCXF=IdCXFYXcompCYg=IdCY
23 21 22 bitr2di φgYHXgXYcompCXF=IdCXFYXcompCYg=IdCYgYSXFFXSYg
24 23 rexbidva φgYHXgXYcompCXF=IdCXFYXcompCYg=IdCYgYHXgYSXFFXSYg
25 12 24 bitrd φFXIYgYHXgYSXFFXSYg