Description: Alternate definition of an isomorphism of a category as a section in both directions. (Contributed by AV, 11-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dfiso3.b | |
|
dfiso3.h | |
||
dfiso3.i | |
||
dfiso3.s | |
||
dfiso3.c | |
||
dfiso3.x | |
||
dfiso3.y | |
||
dfiso3.f | |
||
Assertion | dfiso3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiso3.b | |
|
2 | dfiso3.h | |
|
3 | dfiso3.i | |
|
4 | dfiso3.s | |
|
5 | dfiso3.c | |
|
6 | dfiso3.x | |
|
7 | dfiso3.y | |
|
8 | dfiso3.f | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | 1 2 5 3 6 7 8 9 10 11 | dfiso2 | |
13 | eqid | |
|
14 | 5 | adantr | |
15 | 7 | adantr | |
16 | 6 | adantr | |
17 | simpr | |
|
18 | 8 | adantr | |
19 | 1 2 13 9 4 14 15 16 17 18 | issect2 | |
20 | 1 2 13 9 4 14 16 15 18 17 | issect2 | |
21 | 19 20 | anbi12d | |
22 | ancom | |
|
23 | 21 22 | bitr2di | |
24 | 23 | rexbidva | |
25 | 12 24 | bitrd | |