Metamath Proof Explorer


Theorem dfom3

Description: The class of natural numbers _om can be defined as the intersection of all inductive sets (which is the smallest inductive set, since inductive sets are closed under intersection), which is valid provided we assume the Axiom of Infinity. Definition 6.3 of Eisenberg p. 82. Definition 1.20 of Schloeder p. 3. (Contributed by NM, 6-Aug-1994)

Ref Expression
Assertion dfom3 ω=x|xyxsucyx

Proof

Step Hyp Ref Expression
1 0ex V
2 1 elintab x|xyxsucyxxxyxsucyxx
3 simpl xyxsucyxx
4 2 3 mpgbir x|xyxsucyx
5 suceq y=zsucy=sucz
6 5 eleq1d y=zsucyxsuczx
7 6 rspccv yxsucyxzxsuczx
8 7 adantl xyxsucyxzxsuczx
9 8 a2i xyxsucyxzxxyxsucyxsuczx
10 9 alimi xxyxsucyxzxxxyxsucyxsuczx
11 vex zV
12 11 elintab zx|xyxsucyxxxyxsucyxzx
13 11 sucex suczV
14 13 elintab suczx|xyxsucyxxxyxsucyxsuczx
15 10 12 14 3imtr4i zx|xyxsucyxsuczx|xyxsucyx
16 15 rgenw zωzx|xyxsucyxsuczx|xyxsucyx
17 peano5 x|xyxsucyxzωzx|xyxsucyxsuczx|xyxsucyxωx|xyxsucyx
18 4 16 17 mp2an ωx|xyxsucyx
19 peano1 ω
20 peano2 yωsucyω
21 20 rgen yωsucyω
22 omex ωV
23 eleq2 x=ωxω
24 eleq2 x=ωsucyxsucyω
25 24 raleqbi1dv x=ωyxsucyxyωsucyω
26 23 25 anbi12d x=ωxyxsucyxωyωsucyω
27 eleq2 x=ωzxzω
28 26 27 imbi12d x=ωxyxsucyxzxωyωsucyωzω
29 22 28 spcv xxyxsucyxzxωyωsucyωzω
30 12 29 sylbi zx|xyxsucyxωyωsucyωzω
31 19 21 30 mp2ani zx|xyxsucyxzω
32 31 ssriv x|xyxsucyxω
33 18 32 eqssi ω=x|xyxsucyx