Metamath Proof Explorer


Theorem dftr6

Description: A potential definition of transitivity for sets. (Contributed by Scott Fenton, 18-Mar-2012)

Ref Expression
Hypothesis dftr6.1 AV
Assertion dftr6 TrAAVranEEE

Proof

Step Hyp Ref Expression
1 dftr6.1 AV
2 1 elrn AranEEExxEEEA
3 brdif xEEEAxEEA¬xEA
4 vex xV
5 4 1 brco xEEAyxEyyEA
6 epel xEyxy
7 1 epeli yEAyA
8 6 7 anbi12i xEyyEAxyyA
9 8 exbii yxEyyEAyxyyA
10 5 9 bitri xEEAyxyyA
11 1 epeli xEAxA
12 11 notbii ¬xEA¬xA
13 10 12 anbi12i xEEA¬xEAyxyyA¬xA
14 19.41v yxyyA¬xAyxyyA¬xA
15 exanali yxyyA¬xA¬yxyyAxA
16 14 15 bitr3i yxyyA¬xA¬yxyyAxA
17 3 13 16 3bitri xEEEA¬yxyyAxA
18 17 exbii xxEEEAx¬yxyyAxA
19 exnal x¬yxyyAxA¬xyxyyAxA
20 2 18 19 3bitri AranEEE¬xyxyyAxA
21 20 con2bii xyxyyAxA¬AranEEE
22 dftr2 TrAxyxyyAxA
23 eldif AVranEEEAV¬AranEEE
24 1 23 mpbiran AVranEEE¬AranEEE
25 21 22 24 3bitr4i TrAAVranEEE