Metamath Proof Explorer


Theorem dgrval

Description: Value of the degree function. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Hypothesis dgrval.1 A=coeffF
Assertion dgrval FPolySdegF=supA-100<

Proof

Step Hyp Ref Expression
1 dgrval.1 A=coeffF
2 plyssc PolySPoly
3 2 sseli FPolySFPoly
4 fveq2 f=Fcoefff=coeffF
5 4 1 eqtr4di f=Fcoefff=A
6 5 cnveqd f=Fcoefff-1=A-1
7 6 imaeq1d f=Fcoefff-10=A-10
8 7 supeq1d f=Fsupcoefff-100<=supA-100<
9 df-dgr deg=fPolysupcoefff-100<
10 nn0ssre 0
11 ltso <Or
12 soss 0<Or<Or0
13 10 11 12 mp2 <Or0
14 13 supex supA-100<V
15 8 9 14 fvmpt FPolydegF=supA-100<
16 3 15 syl FPolySdegF=supA-100<