Metamath Proof Explorer


Theorem dia1dimid

Description: A vector (translation) belongs to the 1-dim subspace it generates. (Contributed by NM, 8-Sep-2014)

Ref Expression
Hypotheses dia1dimid.h H=LHypK
dia1dimid.t T=LTrnKW
dia1dimid.r R=trLKW
dia1dimid.i I=DIsoAKW
Assertion dia1dimid KHLWHFTFIRF

Proof

Step Hyp Ref Expression
1 dia1dimid.h H=LHypK
2 dia1dimid.t T=LTrnKW
3 dia1dimid.r R=trLKW
4 dia1dimid.i I=DIsoAKW
5 eqid DVecAKW=DVecAKW
6 1 5 dvalvec KHLWHDVecAKWLVec
7 lveclmod DVecAKWLVecDVecAKWLMod
8 6 7 syl KHLWHDVecAKWLMod
9 8 adantr KHLWHFTDVecAKWLMod
10 eqid BaseDVecAKW=BaseDVecAKW
11 1 2 5 10 dvavbase KHLWHBaseDVecAKW=T
12 11 eleq2d KHLWHFBaseDVecAKWFT
13 12 biimpar KHLWHFTFBaseDVecAKW
14 eqid LSpanDVecAKW=LSpanDVecAKW
15 10 14 lspsnid DVecAKWLModFBaseDVecAKWFLSpanDVecAKWF
16 9 13 15 syl2anc KHLWHFTFLSpanDVecAKWF
17 1 2 3 5 4 14 dia1dim2 KHLWHFTIRF=LSpanDVecAKWF
18 16 17 eleqtrrd KHLWHFTFIRF