Description: Lemma for dia2dim . Show that the composition (sum) of translations (vectors) G and D equals F . Part of proof of Lemma M in Crawley p. 121 line 5. (Contributed by NM, 8-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dia2dimlem4.l | |
|
dia2dimlem4.a | |
||
dia2dimlem4.h | |
||
dia2dimlem4.t | |
||
dia2dimlem4.k | |
||
dia2dimlem4.p | |
||
dia2dimlem4.f | |
||
dia2dimlem4.g | |
||
dia2dimlem4.gv | |
||
dia2dimlem4.d | |
||
dia2dimlem4.dv | |
||
Assertion | dia2dimlem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dia2dimlem4.l | |
|
2 | dia2dimlem4.a | |
|
3 | dia2dimlem4.h | |
|
4 | dia2dimlem4.t | |
|
5 | dia2dimlem4.k | |
|
6 | dia2dimlem4.p | |
|
7 | dia2dimlem4.f | |
|
8 | dia2dimlem4.g | |
|
9 | dia2dimlem4.gv | |
|
10 | dia2dimlem4.d | |
|
11 | dia2dimlem4.dv | |
|
12 | 3 4 | ltrnco | |
13 | 5 10 8 12 | syl3anc | |
14 | 6 | simpld | |
15 | 1 2 3 4 | ltrncoval | |
16 | 5 10 8 14 15 | syl121anc | |
17 | 9 | fveq2d | |
18 | 16 17 11 | 3eqtrd | |
19 | 1 2 3 4 | cdlemd | |
20 | 5 13 7 6 18 19 | syl311anc | |