Metamath Proof Explorer


Theorem dia2dimlem4

Description: Lemma for dia2dim . Show that the composition (sum) of translations (vectors) G and D equals F . Part of proof of Lemma M in Crawley p. 121 line 5. (Contributed by NM, 8-Sep-2014)

Ref Expression
Hypotheses dia2dimlem4.l ˙=K
dia2dimlem4.a A=AtomsK
dia2dimlem4.h H=LHypK
dia2dimlem4.t T=LTrnKW
dia2dimlem4.k φKHLWH
dia2dimlem4.p φPA¬P˙W
dia2dimlem4.f φFT
dia2dimlem4.g φGT
dia2dimlem4.gv φGP=Q
dia2dimlem4.d φDT
dia2dimlem4.dv φDQ=FP
Assertion dia2dimlem4 φDG=F

Proof

Step Hyp Ref Expression
1 dia2dimlem4.l ˙=K
2 dia2dimlem4.a A=AtomsK
3 dia2dimlem4.h H=LHypK
4 dia2dimlem4.t T=LTrnKW
5 dia2dimlem4.k φKHLWH
6 dia2dimlem4.p φPA¬P˙W
7 dia2dimlem4.f φFT
8 dia2dimlem4.g φGT
9 dia2dimlem4.gv φGP=Q
10 dia2dimlem4.d φDT
11 dia2dimlem4.dv φDQ=FP
12 3 4 ltrnco KHLWHDTGTDGT
13 5 10 8 12 syl3anc φDGT
14 6 simpld φPA
15 1 2 3 4 ltrncoval KHLWHDTGTPADGP=DGP
16 5 10 8 14 15 syl121anc φDGP=DGP
17 9 fveq2d φDGP=DQ
18 16 17 11 3eqtrd φDGP=FP
19 1 2 3 4 cdlemd KHLWHDGTFTPA¬P˙WDGP=FPDG=F
20 5 13 7 6 18 19 syl311anc φDG=F