Metamath Proof Explorer


Theorem dia2dimlem4

Description: Lemma for dia2dim . Show that the composition (sum) of translations (vectors) G and D equals F . Part of proof of Lemma M in Crawley p. 121 line 5. (Contributed by NM, 8-Sep-2014)

Ref Expression
Hypotheses dia2dimlem4.l ˙ = K
dia2dimlem4.a A = Atoms K
dia2dimlem4.h H = LHyp K
dia2dimlem4.t T = LTrn K W
dia2dimlem4.k φ K HL W H
dia2dimlem4.p φ P A ¬ P ˙ W
dia2dimlem4.f φ F T
dia2dimlem4.g φ G T
dia2dimlem4.gv φ G P = Q
dia2dimlem4.d φ D T
dia2dimlem4.dv φ D Q = F P
Assertion dia2dimlem4 φ D G = F

Proof

Step Hyp Ref Expression
1 dia2dimlem4.l ˙ = K
2 dia2dimlem4.a A = Atoms K
3 dia2dimlem4.h H = LHyp K
4 dia2dimlem4.t T = LTrn K W
5 dia2dimlem4.k φ K HL W H
6 dia2dimlem4.p φ P A ¬ P ˙ W
7 dia2dimlem4.f φ F T
8 dia2dimlem4.g φ G T
9 dia2dimlem4.gv φ G P = Q
10 dia2dimlem4.d φ D T
11 dia2dimlem4.dv φ D Q = F P
12 3 4 ltrnco K HL W H D T G T D G T
13 5 10 8 12 syl3anc φ D G T
14 6 simpld φ P A
15 1 2 3 4 ltrncoval K HL W H D T G T P A D G P = D G P
16 5 10 8 14 15 syl121anc φ D G P = D G P
17 9 fveq2d φ D G P = D Q
18 16 17 11 3eqtrd φ D G P = F P
19 1 2 3 4 cdlemd K HL W H D G T F T P A ¬ P ˙ W D G P = F P D G = F
20 5 13 7 6 18 19 syl311anc φ D G = F