Metamath Proof Explorer


Theorem dibfval

Description: The partial isomorphism B for a lattice K . (Contributed by NM, 8-Dec-2013)

Ref Expression
Hypotheses dibval.b B=BaseK
dibval.h H=LHypK
dibval.t T=LTrnKW
dibval.o 0˙=fTIB
dibval.j J=DIsoAKW
dibval.i I=DIsoBKW
Assertion dibfval KVWHI=xdomJJx×0˙

Proof

Step Hyp Ref Expression
1 dibval.b B=BaseK
2 dibval.h H=LHypK
3 dibval.t T=LTrnKW
4 dibval.o 0˙=fTIB
5 dibval.j J=DIsoAKW
6 dibval.i I=DIsoBKW
7 1 2 dibffval KVDIsoBK=wHxdomDIsoAKwDIsoAKwx×fLTrnKwIB
8 7 fveq1d KVDIsoBKW=wHxdomDIsoAKwDIsoAKwx×fLTrnKwIBW
9 6 8 eqtrid KVI=wHxdomDIsoAKwDIsoAKwx×fLTrnKwIBW
10 fveq2 w=WDIsoAKw=DIsoAKW
11 10 5 eqtr4di w=WDIsoAKw=J
12 11 dmeqd w=WdomDIsoAKw=domJ
13 11 fveq1d w=WDIsoAKwx=Jx
14 fveq2 w=WLTrnKw=LTrnKW
15 14 3 eqtr4di w=WLTrnKw=T
16 eqidd w=WIB=IB
17 15 16 mpteq12dv w=WfLTrnKwIB=fTIB
18 17 4 eqtr4di w=WfLTrnKwIB=0˙
19 18 sneqd w=WfLTrnKwIB=0˙
20 13 19 xpeq12d w=WDIsoAKwx×fLTrnKwIB=Jx×0˙
21 12 20 mpteq12dv w=WxdomDIsoAKwDIsoAKwx×fLTrnKwIB=xdomJJx×0˙
22 eqid wHxdomDIsoAKwDIsoAKwx×fLTrnKwIB=wHxdomDIsoAKwDIsoAKwx×fLTrnKwIB
23 5 fvexi JV
24 23 dmex domJV
25 24 mptex xdomJJx×0˙V
26 21 22 25 fvmpt WHwHxdomDIsoAKwDIsoAKwx×fLTrnKwIBW=xdomJJx×0˙
27 9 26 sylan9eq KVWHI=xdomJJx×0˙