Metamath Proof Explorer


Theorem dibopelval2

Description: Member of the partial isomorphism B. (Contributed by NM, 3-Mar-2014) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses dibval2.b B=BaseK
dibval2.l ˙=K
dibval2.h H=LHypK
dibval2.t T=LTrnKW
dibval2.o 0˙=fTIB
dibval2.j J=DIsoAKW
dibval2.i I=DIsoBKW
Assertion dibopelval2 KVWHXBX˙WFSIXFJXS=0˙

Proof

Step Hyp Ref Expression
1 dibval2.b B=BaseK
2 dibval2.l ˙=K
3 dibval2.h H=LHypK
4 dibval2.t T=LTrnKW
5 dibval2.o 0˙=fTIB
6 dibval2.j J=DIsoAKW
7 dibval2.i I=DIsoBKW
8 1 2 3 4 5 6 7 dibval2 KVWHXBX˙WIX=JX×0˙
9 8 eleq2d KVWHXBX˙WFSIXFSJX×0˙
10 opelxp FSJX×0˙FJXS0˙
11 4 fvexi TV
12 11 mptex fTIBV
13 5 12 eqeltri 0˙V
14 13 elsn2 S0˙S=0˙
15 14 anbi2i FJXS0˙FJXS=0˙
16 10 15 bitri FSJX×0˙FJXS=0˙
17 9 16 bitrdi KVWHXBX˙WFSIXFJXS=0˙