Metamath Proof Explorer


Theorem dibval3N

Description: Value of the partial isomorphism B for a lattice K . (Contributed by NM, 24-Feb-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dibval3.b B=BaseK
dibval3.l ˙=K
dibval3.h H=LHypK
dibval3.t T=LTrnKW
dibval3.r R=trLKW
dibval3.o 0˙=gTIB
dibval3.i I=DIsoBKW
Assertion dibval3N KVWHXBX˙WIX=fT|Rf˙X×0˙

Proof

Step Hyp Ref Expression
1 dibval3.b B=BaseK
2 dibval3.l ˙=K
3 dibval3.h H=LHypK
4 dibval3.t T=LTrnKW
5 dibval3.r R=trLKW
6 dibval3.o 0˙=gTIB
7 dibval3.i I=DIsoBKW
8 eqid DIsoAKW=DIsoAKW
9 1 2 3 4 6 8 7 dibval2 KVWHXBX˙WIX=DIsoAKWX×0˙
10 1 2 3 4 5 8 diaval KVWHXBX˙WDIsoAKWX=fT|Rf˙X
11 10 xpeq1d KVWHXBX˙WDIsoAKWX×0˙=fT|Rf˙X×0˙
12 9 11 eqtrd KVWHXBX˙WIX=fT|Rf˙X×0˙