Metamath Proof Explorer


Theorem dicfnN

Description: Functionality and domain of the partial isomorphism C. (Contributed by NM, 8-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dicfn.l ˙ = K
dicfn.a A = Atoms K
dicfn.h H = LHyp K
dicfn.i I = DIsoC K W
Assertion dicfnN K V W H I Fn p A | ¬ p ˙ W

Proof

Step Hyp Ref Expression
1 dicfn.l ˙ = K
2 dicfn.a A = Atoms K
3 dicfn.h H = LHyp K
4 dicfn.i I = DIsoC K W
5 breq1 p = q p ˙ W q ˙ W
6 5 notbid p = q ¬ p ˙ W ¬ q ˙ W
7 6 elrab q p A | ¬ p ˙ W q A ¬ q ˙ W
8 eqid oc K W = oc K W
9 eqid LTrn K W = LTrn K W
10 eqid TEndo K W = TEndo K W
11 1 2 3 8 9 10 4 dicval K V W H q A ¬ q ˙ W I q = f s | f = s ι u LTrn K W | u oc K W = q s TEndo K W
12 fvex I q V
13 11 12 eqeltrrdi K V W H q A ¬ q ˙ W f s | f = s ι u LTrn K W | u oc K W = q s TEndo K W V
14 7 13 sylan2b K V W H q p A | ¬ p ˙ W f s | f = s ι u LTrn K W | u oc K W = q s TEndo K W V
15 14 ralrimiva K V W H q p A | ¬ p ˙ W f s | f = s ι u LTrn K W | u oc K W = q s TEndo K W V
16 eqid q p A | ¬ p ˙ W f s | f = s ι u LTrn K W | u oc K W = q s TEndo K W = q p A | ¬ p ˙ W f s | f = s ι u LTrn K W | u oc K W = q s TEndo K W
17 16 fnmpt q p A | ¬ p ˙ W f s | f = s ι u LTrn K W | u oc K W = q s TEndo K W V q p A | ¬ p ˙ W f s | f = s ι u LTrn K W | u oc K W = q s TEndo K W Fn p A | ¬ p ˙ W
18 15 17 syl K V W H q p A | ¬ p ˙ W f s | f = s ι u LTrn K W | u oc K W = q s TEndo K W Fn p A | ¬ p ˙ W
19 1 2 3 8 9 10 4 dicfval K V W H I = q p A | ¬ p ˙ W f s | f = s ι u LTrn K W | u oc K W = q s TEndo K W
20 19 fneq1d K V W H I Fn p A | ¬ p ˙ W q p A | ¬ p ˙ W f s | f = s ι u LTrn K W | u oc K W = q s TEndo K W Fn p A | ¬ p ˙ W
21 18 20 mpbird K V W H I Fn p A | ¬ p ˙ W