Description: A difference of measurable sets is measurable. (Contributed by Mario Carneiro, 18-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | difmbl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indif2 | |
|
2 | mblss | |
|
3 | df-ss | |
|
4 | 2 3 | sylib | |
5 | 4 | difeq1d | |
6 | 1 5 | eqtrid | |
7 | 6 | adantr | |
8 | cmmbl | |
|
9 | inmbl | |
|
10 | 8 9 | sylan2 | |
11 | 7 10 | eqeltrrd | |