Metamath Proof Explorer


Theorem difmbl

Description: A difference of measurable sets is measurable. (Contributed by Mario Carneiro, 18-Mar-2014)

Ref Expression
Assertion difmbl AdomvolBdomvolABdomvol

Proof

Step Hyp Ref Expression
1 indif2 AB=AB
2 mblss AdomvolA
3 df-ss AA=A
4 2 3 sylib AdomvolA=A
5 4 difeq1d AdomvolAB=AB
6 1 5 eqtrid AdomvolAB=AB
7 6 adantr AdomvolBdomvolAB=AB
8 cmmbl BdomvolBdomvol
9 inmbl AdomvolBdomvolABdomvol
10 8 9 sylan2 AdomvolBdomvolABdomvol
11 7 10 eqeltrrd AdomvolBdomvolABdomvol