Metamath Proof Explorer


Theorem dih1dimat

Description: Any 1-dimensional subspace is a value of isomorphism H. (Contributed by NM, 11-Apr-2014)

Ref Expression
Hypotheses dih1dimat.h H=LHypK
dih1dimat.u U=DVecHKW
dih1dimat.i I=DIsoHKW
dih1dimat.a A=LSAtomsU
Assertion dih1dimat KHLWHPAPranI

Proof

Step Hyp Ref Expression
1 dih1dimat.h H=LHypK
2 dih1dimat.u U=DVecHKW
3 dih1dimat.i I=DIsoHKW
4 dih1dimat.a A=LSAtomsU
5 eqid BaseK=BaseK
6 eqid K=K
7 eqid AtomsK=AtomsK
8 eqid ocKW=ocKW
9 eqid LTrnKW=LTrnKW
10 eqid trLKW=trLKW
11 eqid TEndoKW=TEndoKW
12 eqid hLTrnKWIBaseK=hLTrnKWIBaseK
13 eqid ScalarU=ScalarU
14 eqid invrScalarU=invrScalarU
15 eqid BaseU=BaseU
16 eqid U=U
17 eqid LSubSpU=LSubSpU
18 eqid LSpanU=LSpanU
19 eqid 0U=0U
20 eqid ιhLTrnKW|hocKW=invrScalarUsfocKW=ιhLTrnKW|hocKW=invrScalarUsfocKW
21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 dih1dimatlem KHLWHPAPranI