Metamath Proof Explorer


Theorem dihglb

Description: Isomorphism H of a lattice glb. (Contributed by NM, 11-Apr-2014)

Ref Expression
Hypotheses dihglb.b B=BaseK
dihglb.g G=glbK
dihglb.h H=LHypK
dihglb.i I=DIsoHKW
Assertion dihglb KHLWHSBSIGS=xSIx

Proof

Step Hyp Ref Expression
1 dihglb.b B=BaseK
2 dihglb.g G=glbK
3 dihglb.h H=LHypK
4 dihglb.i I=DIsoHKW
5 eqid K=K
6 eqid meetK=meetK
7 eqid AtomsK=AtomsK
8 eqid DVecHKW=DVecHKW
9 eqid LSubSpDVecHKW=LSubSpDVecHKW
10 eqid LSAtomsDVecHKW=LSAtomsDVecHKW
11 1 5 6 7 2 3 4 8 9 10 dihglblem6 KHLWHSBSIGS=xSIx