Metamath Proof Explorer


Theorem dihjat4

Description: Transfer the subspace sum of a closed subspace and an atom back to lattice join. (Contributed by NM, 25-Apr-2015)

Ref Expression
Hypotheses dihjat4.j ˙=joinK
dihjat4.h H=LHypK
dihjat4.i I=DIsoHKW
dihjat4.u U=DVecHKW
dihjat4.s ˙=LSSumU
dihjat4.a A=LSAtomsU
dihjat4.k φKHLWH
dihjat4.x φXranI
dihjat4.q φQA
Assertion dihjat4 φX˙Q=II-1X˙I-1Q

Proof

Step Hyp Ref Expression
1 dihjat4.j ˙=joinK
2 dihjat4.h H=LHypK
3 dihjat4.i I=DIsoHKW
4 dihjat4.u U=DVecHKW
5 dihjat4.s ˙=LSSumU
6 dihjat4.a A=LSAtomsU
7 dihjat4.k φKHLWH
8 dihjat4.x φXranI
9 dihjat4.q φQA
10 eqid BaseK=BaseK
11 eqid AtomsK=AtomsK
12 10 2 3 dihcnvcl KHLWHXranII-1XBaseK
13 7 8 12 syl2anc φI-1XBaseK
14 11 2 4 3 6 dihlatat KHLWHQAI-1QAtomsK
15 7 9 14 syl2anc φI-1QAtomsK
16 10 2 1 11 4 5 3 7 13 15 dihjat3 φII-1X˙I-1Q=II-1X˙II-1Q
17 2 3 dihcnvid2 KHLWHXranIII-1X=X
18 7 8 17 syl2anc φII-1X=X
19 2 4 3 6 dih1dimat KHLWHQAQranI
20 7 9 19 syl2anc φQranI
21 2 3 dihcnvid2 KHLWHQranIII-1Q=Q
22 7 20 21 syl2anc φII-1Q=Q
23 18 22 oveq12d φII-1X˙II-1Q=X˙Q
24 16 23 eqtr2d φX˙Q=II-1X˙I-1Q