Step |
Hyp |
Ref |
Expression |
1 |
|
dihmeetlem14.b |
|
2 |
|
dihmeetlem14.l |
|
3 |
|
dihmeetlem14.h |
|
4 |
|
dihmeetlem14.j |
|
5 |
|
dihmeetlem14.m |
|
6 |
|
dihmeetlem14.a |
|
7 |
|
dihmeetlem14.u |
|
8 |
|
dihmeetlem14.s |
|
9 |
|
dihmeetlem14.i |
|
10 |
|
eqid |
|
11 |
1 2 3 4 5 6 7 8 9 10
|
dihmeetlem15N |
|
12 |
11
|
oveq2d |
|
13 |
|
simpl1 |
|
14 |
|
simpl2 |
|
15 |
|
simpl3l |
|
16 |
1 6
|
atbase |
|
17 |
15 16
|
syl |
|
18 |
|
simpr1 |
|
19 |
|
simpr2 |
|
20 |
|
simpr3 |
|
21 |
1 2 3 4 5 6 7 8 9
|
dihmeetlem14N |
|
22 |
13 14 17 18 19 20 21
|
syl33anc |
|
23 |
3 7 13
|
dvhlmod |
|
24 |
|
simpl1l |
|
25 |
24
|
hllatd |
|
26 |
1 5
|
latmcl |
|
27 |
25 14 17 26
|
syl3anc |
|
28 |
|
eqid |
|
29 |
1 3 9 7 28
|
dihlss |
|
30 |
13 27 29
|
syl2anc |
|
31 |
28
|
lsssubg |
|
32 |
23 30 31
|
syl2anc |
|
33 |
10 8
|
lsm01 |
|
34 |
32 33
|
syl |
|
35 |
12 22 34
|
3eqtr3rd |
|