Metamath Proof Explorer


Theorem dihord2cN

Description: Part of proof after Lemma N of Crawley p. 122. Reverse ordering property. TODO: needed? shorten other proof with it? (Contributed by NM, 3-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihjust.b B = Base K
dihjust.l ˙ = K
dihjust.j ˙ = join K
dihjust.m ˙ = meet K
dihjust.a A = Atoms K
dihjust.h H = LHyp K
dihjust.i I = DIsoB K W
dihjust.J J = DIsoC K W
dihjust.u U = DVecH K W
dihjust.s ˙ = LSSum U
dihord2c.t T = LTrn K W
dihord2c.r R = trL K W
dihord2c.o O = h T I B
Assertion dihord2cN K HL W H X B f T R f ˙ X ˙ W f O I X ˙ W

Proof

Step Hyp Ref Expression
1 dihjust.b B = Base K
2 dihjust.l ˙ = K
3 dihjust.j ˙ = join K
4 dihjust.m ˙ = meet K
5 dihjust.a A = Atoms K
6 dihjust.h H = LHyp K
7 dihjust.i I = DIsoB K W
8 dihjust.J J = DIsoC K W
9 dihjust.u U = DVecH K W
10 dihjust.s ˙ = LSSum U
11 dihord2c.t T = LTrn K W
12 dihord2c.r R = trL K W
13 dihord2c.o O = h T I B
14 simp3 K HL W H X B f T R f ˙ X ˙ W f T R f ˙ X ˙ W
15 eqidd K HL W H X B f T R f ˙ X ˙ W O = O
16 simp1 K HL W H X B f T R f ˙ X ˙ W K HL W H
17 simp1l K HL W H X B f T R f ˙ X ˙ W K HL
18 17 hllatd K HL W H X B f T R f ˙ X ˙ W K Lat
19 simp2 K HL W H X B f T R f ˙ X ˙ W X B
20 simp1r K HL W H X B f T R f ˙ X ˙ W W H
21 1 6 lhpbase W H W B
22 20 21 syl K HL W H X B f T R f ˙ X ˙ W W B
23 1 4 latmcl K Lat X B W B X ˙ W B
24 18 19 22 23 syl3anc K HL W H X B f T R f ˙ X ˙ W X ˙ W B
25 1 2 4 latmle2 K Lat X B W B X ˙ W ˙ W
26 18 19 22 25 syl3anc K HL W H X B f T R f ˙ X ˙ W X ˙ W ˙ W
27 1 2 6 11 12 13 7 dibopelval3 K HL W H X ˙ W B X ˙ W ˙ W f O I X ˙ W f T R f ˙ X ˙ W O = O
28 16 24 26 27 syl12anc K HL W H X B f T R f ˙ X ˙ W f O I X ˙ W f T R f ˙ X ˙ W O = O
29 14 15 28 mpbir2and K HL W H X B f T R f ˙ X ˙ W f O I X ˙ W