Metamath Proof Explorer


Theorem dihord2cN

Description: Part of proof after Lemma N of Crawley p. 122. Reverse ordering property. TODO: needed? shorten other proof with it? (Contributed by NM, 3-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihjust.b 𝐵 = ( Base ‘ 𝐾 )
dihjust.l = ( le ‘ 𝐾 )
dihjust.j = ( join ‘ 𝐾 )
dihjust.m = ( meet ‘ 𝐾 )
dihjust.a 𝐴 = ( Atoms ‘ 𝐾 )
dihjust.h 𝐻 = ( LHyp ‘ 𝐾 )
dihjust.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
dihjust.J 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
dihjust.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihjust.s = ( LSSum ‘ 𝑈 )
dihord2c.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dihord2c.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
dihord2c.o 𝑂 = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
Assertion dihord2cN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ⟨ 𝑓 , 𝑂 ⟩ ∈ ( 𝐼 ‘ ( 𝑋 𝑊 ) ) )

Proof

Step Hyp Ref Expression
1 dihjust.b 𝐵 = ( Base ‘ 𝐾 )
2 dihjust.l = ( le ‘ 𝐾 )
3 dihjust.j = ( join ‘ 𝐾 )
4 dihjust.m = ( meet ‘ 𝐾 )
5 dihjust.a 𝐴 = ( Atoms ‘ 𝐾 )
6 dihjust.h 𝐻 = ( LHyp ‘ 𝐾 )
7 dihjust.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
8 dihjust.J 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
9 dihjust.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
10 dihjust.s = ( LSSum ‘ 𝑈 )
11 dihord2c.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
12 dihord2c.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
13 dihord2c.o 𝑂 = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
14 simp3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) )
15 eqidd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → 𝑂 = 𝑂 )
16 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
17 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → 𝐾 ∈ HL )
18 17 hllatd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → 𝐾 ∈ Lat )
19 simp2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → 𝑋𝐵 )
20 simp1r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → 𝑊𝐻 )
21 1 6 lhpbase ( 𝑊𝐻𝑊𝐵 )
22 20 21 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → 𝑊𝐵 )
23 1 4 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵 ) → ( 𝑋 𝑊 ) ∈ 𝐵 )
24 18 19 22 23 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ( 𝑋 𝑊 ) ∈ 𝐵 )
25 1 2 4 latmle2 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵 ) → ( 𝑋 𝑊 ) 𝑊 )
26 18 19 22 25 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ( 𝑋 𝑊 ) 𝑊 )
27 1 2 6 11 12 13 7 dibopelval3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑋 𝑊 ) ∈ 𝐵 ∧ ( 𝑋 𝑊 ) 𝑊 ) ) → ( ⟨ 𝑓 , 𝑂 ⟩ ∈ ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ↔ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ∧ 𝑂 = 𝑂 ) ) )
28 16 24 26 27 syl12anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ( ⟨ 𝑓 , 𝑂 ⟩ ∈ ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ↔ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ∧ 𝑂 = 𝑂 ) ) )
29 14 15 28 mpbir2and ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ∧ ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ) → ⟨ 𝑓 , 𝑂 ⟩ ∈ ( 𝐼 ‘ ( 𝑋 𝑊 ) ) )