Metamath Proof Explorer


Theorem dihssxp

Description: An isomorphism H value is included in the vector space (expressed as T X. E ). (Contributed by NM, 26-Sep-2014)

Ref Expression
Hypotheses dihssxp.b B=BaseK
dihssxp.h H=LHypK
dihssxp.t T=LTrnKW
dihssxp.e E=TEndoKW
dihssxp.i I=DIsoHKW
dihssxp.k φKHLWH
dihssxp.x φXB
Assertion dihssxp φIXT×E

Proof

Step Hyp Ref Expression
1 dihssxp.b B=BaseK
2 dihssxp.h H=LHypK
3 dihssxp.t T=LTrnKW
4 dihssxp.e E=TEndoKW
5 dihssxp.i I=DIsoHKW
6 dihssxp.k φKHLWH
7 dihssxp.x φXB
8 eqid DVecHKW=DVecHKW
9 eqid BaseDVecHKW=BaseDVecHKW
10 1 2 5 8 9 dihss KHLWHXBIXBaseDVecHKW
11 6 7 10 syl2anc φIXBaseDVecHKW
12 2 3 4 8 9 dvhvbase KHLWHBaseDVecHKW=T×E
13 6 12 syl φBaseDVecHKW=T×E
14 11 13 sseqtrd φIXT×E